CADMIUM AND LEAD TOXICITY IN TANNER grass Brachiaria arrecta

Authors

DOI:

https://doi.org/10.22267/rcia.143102.27

Keywords:

abiotic stress, heavy metals, tropical pastures, grasses, anthropogenic pollution

Abstract

Physiopathologies in Brachiaria arrecta exposed to toxic contents of cadmium and lead were evaluatedin healthy 20-day old seedlings under hydroponic growth in the greenhouse of the Universidad Nacional of Colombia at Palmira. The study aimed to describe increasing symptoms due to poisoning, through the design of a rating scale of increasing damage. In addition, histological changes in roots, stems, and leaves were evaluated by high resolution light microscopy (HLRM). In this regard, the plant material was subjected to abiotic stress treatments with CdCl2 salts at 10 ppm concentration and Pb (NO3 )salts at 500 ppm. The main results showed greater deterioration in roots, stems, and leaves when plants were exposed to lead rather than cadmium. Extreme deformities were observed in cell walls of cortex cells and in the endodermis of the root. Leaf damage was notorious for both metals, especially in the chlorophyll parenchyma and in the deformity of epidermal walls of the adaxial and abaxial sides of the leaf. Deformities in the stems appeared in parenchymal filler cells with intense lead bioaccumulation. These results suggest that bioconcentration in plant tissues causes histological disorders, which may involve a food web, therefore, impacting on public health.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

BHOPAL, R. 2008. Concepts of Epidemiology Integrating the ideas, theories, principles and methods of epidemiology (2nd edition).New York: Oxford University Press. 411 p.

BARCELÓ, J.; POSCHENRIEDER, C.; TOLR Á,R.P. 2003. Importance of phenolics in rhizosphere and roots for plant metal relationships. pp. 15 - 19. In: G. Gobran (ed.) Extended Abstracts 7th ICOBTE Upsala. 62 - 163 p.

BOWIE S.; THORNTON, N. 1985: Environmental Geochemistry and Health. Kluwer Academic Publ., Hingham. MA. En: www.ehu.es/sem/macla_pdf/macla10/Macla10_48.pdf; consulta: abril, 2014.

BROWN, E T.; HOCK, E. 1988. Discussion on paper 2043 by R. near entiled Determination R. of shear failure envelope in rock massees. J. Geotech. Engng. Dir. ASLE. 3:371 - 373.

CANCHILA, E.R.; SOCA, M.; OJEDA, F.; MACHADO, R.; CANCHILA, N. 2010. Dinámica de crecimiento de 24 accesiones de Brachiaria spp. Pastos y Forrajes. 33(4): 1 - 9.

COBB, G.; SANDS, K.; WATERS, M.; WIXSON, M.; DORWARD-KING, E. 2009. Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry. 19(3): 600 - 607.

CHENG, H.M.; ZHENG, C.R.; TU, C.; ZHOU,D.M. 2001. Studies on loading capacity of agricultural soils for heavy metals and its applications in China. Applied Geochemistry. 16:1397 - 1403.

DAVIES, B.E. 1995. Lead and other heavy metals in urban areas and consequences for the health of their inhabitants. pp. 287-307. In: Majumdar, S.K., Miller, E.W., Brenner, F.J. (eds), Environmental ontaminants, Ecosystems and Human Health. The Pennsylvania Academy of Science, Easton PA, USA.

DOCE. 2001. Reglamento CE 466/2001 de la Comisión por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. DOCE, 16 marzo 2001 L77/1-13. Disponible en: http://www.boe.es/doue/2001/077/L00001-00013.pdf, consulta: marzo, 2014.

ESPINOZA, F.; LLINIMA, R.; VARGAS, M. 2013. Contaminación por plomo un enemigo silencioso. En: http://www.slideshare.net/fespinoza02/contaminacin-por-plomo; consulta: junio, 2013.

ERNST, W.; VERKLEIJ, J.; SCHAT, J. 1992. Metal tolerance in plants. Acta Botanica Neerlandica. 41:229 - 248.

HUANG, JW.; GRUNES, DL.; KOCHIAN LV. 1994. Voltage dependent Ca2+ influx into rightside-out plasma membrane vesicles isolated from wheat roots: characteristic of a putative Ca2+ channel. Proceedings of the National Academy of Sciences of the United States of America. 91(8):3473 - 3477.

HUANG, J.; CUNNINGHAM, S. 1996. Lead Phytoextraction: species variation in lead uptake and translocation. New Phytol. 134:75 - 84.

JARVIS, M.; LEUNG, D. 2002. Chelated lead transport in Pinus radiata: an ultrastructural study. Environmental and Experimental Botany. 48:21 - 32.

MARSCHNER, H. 1995. Mineral Nutrition of Higher Plants. Ed 2. Academic Press, Londres. 862 p.

MARSCHNER, P.; GODBOLD, DL.; JUTSCHHE, G. 1996. Dynamics of lead accumulation in mycorrhizal Norway spruce (Piceaabies (L.) karst.). Plant Soil. 178:239 - 245.

MARSHALL, J.; CORZO, A.; LEIGH, RA.; STANDERS, D. 1994. Membrane potential-dependent calcium transport in right-side-out plasma membrane vesicles from Zea mays L. roots. The Plant Journal. 5(5):683 - 694.

MERCER, E.; BIRBECK, M. 1974. Manual de microscopía electrónica para biólogos. Ed. Blume. Madrid. 118 p.

NASTAR, L. 2012. Inventario de bioindicadores ambientales de calidad de suelos, asociados al corredor pretolífero. Tesis de grado Bióloga. Universidad de Pamplona. 78 p.

OLIVERA, Y.; MACHADO, R.; DEL POZO, P.P.; RAMÍREZ, J.; CEPERO, B. 2009. Evaluación agronómica de una asociación de 20 accesiones de Brachiaria brizantha con Stylosanthes guianensis CIAT-184. p. 96. En: Memorias. VIII Taller Internacional Silvopastoril Los árboles y arbustos en la ganadería. EEPF Indio Hatuey. Matanzas, Cuba. cd-rom.

PORTA, M. 2008. A Dictionary of Epidemiology (5th edition). New York: Oxford University Press. 289 p.

PELÁEZ, M. 2014. Escala valorativa de reacciones crecientes de fitotoxicidad con metales pesados en B. radicans. Mimeografo. Resultado preliminar. Trabajo de grado: Evaluación del estrés abiótico en Brachiarias pp. Inducido por bioacumulación de cadmio y plomo, en una zona aledaña al corredor Petrolífero de Barrancabermeja (Colombia), para optar al título Doctor en Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira. 228 p.

RESH, H. 2001. Cultivos hidropónicos. Madrid Mundiprensa. 702 p.

ROMERO-PUERTAS, M.C.; CORPAS, F.J.; RODRÍGUEZ-SERRANO, M.; GÓMEZ, M.; DEL RÍO, L.A.; SANDALIO, L.M. 2007. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology. 164:1346 -1357.

SHANNON, J.G.; NELSON, R.L.; WRATHER, J.A. 2010. Registration of LG04-6863 soybean germplasm line with diverse pedigree. Journal of Plant Registrations. 4:70 - 72.

SÁNCHEZ, C. J. 2010. Metodologías analíticas para la determinación de metales tóxicos en muestras de interés ambiental. Tesis de Maestría, Universidad Nacional de Colombia. 76 p.

SÁNCHEZ, A.; LÓPEZ, M.; NADAL, J. 2007. Bioaccumulation of lead, mercury, and cadmium in the greater hite-toothed shrew, Crocidurarussula, from the Ebro Delta (NE Spain): sex- and age-dependent variation. Environmental Pollution. 145(1):7 - 14.

SEREGIN, I.; IVANIOV, V. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology. 48:606 - 630.

SIEGEL, F. R., 2002. Environmental geochemistry of potentially toxic metals. Springer-Verlag Berlin Heidelberg. New York. 1 - 217 p.

VERMA, S.; DUBEY, R. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science. 164:645 - 655. 130.

WENG, L.; TEMMINGHOFF, E. J.; VAN RIEMSDIJK, W. H. 2001. Contribution of individual sorbents to hecontrol of heavy metal activity in sandy soil. Environmental Science & Technology. 35:4436 - 43.

YLLANES, P.; VÉLEZ-AZAÑERO, A.; LOZANO, S. 2014. Phytotoxic effects of lead on dekalb hybrid maize (Zea mays L.) in sandy and silty soil. The Biologist. 12(2):337 - 348.

Published

2014-12-31

How to Cite

Pelaez P, M., Casierra-Posada, F., & Torres R., G. A. (2014). CADMIUM AND LEAD TOXICITY IN TANNER grass Brachiaria arrecta. Revista De Ciencias Agrícolas, 31(2), 3–13. https://doi.org/10.22267/rcia.143102.27