Effect of temperature on colloids of agricultural soils through dynamic light scattering

Authors

  • Túlio Armando Lerma H. Universidad del Valle
  • Enrique Miguel Combatt. Universidad de Córdoba
  • Manuel Salvador Palencia L. Universidad del Valle

DOI:

https://doi.org/10.22267/rcia.153202.17

Keywords:

Thermal degradation, colloidal fraction, particle size, cation exchange capacity.

Abstract

Organic matter and the colloidal fraction are the main soil components  affected by indiscriminate  bush burning. As a consequence, soil structure deterioration, loss of cation exchange capacity (CEC), and soil fertility reduction occur due to the high temperatures. In contrast, the use of thermal treatment has been proposed as a grounding strategy for clayey soils in civil constructions. However, the effect of temperature on the colloidal fraction has only been assessed in terms of its mechanical properties, while few studies have addressed its effect in relation to agriculturally important properties, such as CEC, structure, and erosion susceptibility. The objective of this study was to study the effect of temperature on the colloidal fraction of agricultural soils through dynamic light scattering (DLS). Two soil samples from the departments of Córdoba and Valle del Cauca were collected and characterized. The colloidal fraction was extracted through a modified Bouyoucos method and subjected to different hermal treatments (from 150°C to 550°C). The samples were characterized according to elemental analysis, FT-IR, and DLS, and their CEC was evaluated. It was concluded that colloidal fraction properties are strongly altered by the effect of temperature. Furthermore, a decrease in CEC (from 76 to 35 and 103 to 26 cmol(+)/kg soil) and an increase in particle size (from 639 ± 165 to 1250 ±435 and 606 ± 102 to 1540 ± 320) were observed for S-Cordoba and S-Valle, respectively; in addition to the elimination of organic matter.

 

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

BOLT, G. y BRUGGENWERT, M. 1976. Chapter 1: Composition of the Soil. In Soil. Developments in Soil Science. 5(A):1 - 12.

CADENE, A., DURAND-VIDAL, S.,TURG, P. y BRENDLE, J. 2005. Study of individual Na-montmorillonite particles size, morphology, and apparent charge. Journal of Colloid and Interface Science. 285:719 - 730.

CAMEJO, C. 2013. Modificación de arcillas comerciales y naturales para el diseño de nuevos sistemas catalíticos. Tesis doctoral. Universidad de Alcalá. Alcalá - España. 279 p.

DEAN, S., FARRER, E. y MENGES, E. 2015. Fire Effects on Soil Biogeo Chemistry in Florida Scrubby Flatwoods. American Midland Naturalist. 174(1):49.

EDIVALDO, L.,THOMAZ, V. y STEFAN H. 2014. Effects of fire on the physicochemical properties of soil in a slashand- burn agriculture.CATENA. 122:209 - 215.

FURUKAWA, Y., WATKINS, J., KIM, J., CURRY, K. y BENNETT, R. 2009. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater. Geochemical Transaction. 10:1 - 11.

INBAR, A., LADO, M., STERNBERG, M.;TENAU, H. y BENHUR, M. 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma. 221 - 222:131 - 138.

INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI (IGAC). 2006. Métodos analíticos delaboratorio de suelos. VI Edición. Bogotá, Subdirección de Agrología.

KASZUBA, M., MCKNIGHT, D.,CONNAH, M., MCNEILWATSON, F. y NOBBMANN, U. 2008. Measuring sub nanometre sizes using dynamic light scattering. Journal of Nanoparticle Research. 10(5):823 - 829.

MADEJOVÁ, J., PÁLKOVÁ, H. y KOMADEL, P. 2010. IR spectroscopy of clay minerals and clay nanocomposites. Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications. 41:22 - 71.

MISSANA, T. y ADELL, A. 2000. On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability. Journal of Colloid and Interface Science, 230:150 - 156.

NIEDER, R. y BENBI, D. 2008. Carbon and Nitrogen in the Terrestrial Environment. Springer Netherlands, Dordrecht. 81 - 111.

POLI, A., BATISTA, T., SCHMITT, C., GESSNER, F. y NEUMANN, M. 2008. Effect of sonication on the particle size of montmorillonite clays. Journal of Colloid Interface Science 325(2):386 - 390.

REYNARD-CALLANAN, J., POPE, G.,GORRING, M. y FENG, H. 2010. Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography, 31:407 - 422.

SCHOONHEYDT, R. y JOHNSTON, C. 2013. Chapter 5 - Surface and Interface Chemistry of Clay Minerals. En: Bergaya, F. y Lagaly, G.(Ed). Handbook of Clay Science; Science, Elsevier, 139 - 172.

SIMEON, B. 2012. Forest fire influence on soil texture in burned forests in Bulgaria. Forestry Ideas. 18(2):155 - 162. SOIL SCIENCE SOCIETY OF AMERICA. 2008. Glossary of Soil Science Terms. Soil Science Society of America, Wisconsin. 57 p.

VERMA, S. y JAYAKUMAR, S. 2012. Impact of forest fire on physical, chemical and biological properties of soil: Areview. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3):168 - 176.

VILLEGAS, E. 2013. Modificación y caracterización de un material arcilloso tipo esmectita de potencial aplicación en catálisis. Tesis de Magister. Universidad Nacional de Colombia. Medellin. 67 p.

ZARATE, L. 2004. Estudio de la temperatura de la llama en incendios forestales. Tesis doctoral. Universitat Politècnica de Catalunya.

Published

2015-12-31

How to Cite

Lerma H., T. A., Combatt., E. M., & Palencia L., M. S. (2015). Effect of temperature on colloids of agricultural soils through dynamic light scattering. Revista De Ciencias Agrícolas, 32(2), 94–103. https://doi.org/10.22267/rcia.153202.17