The bioproductive behavior of breeding sows and their offspring fed with probiotic additive

  • José Efraín Miranda-Yuquilema Universidad Central “Marta Abreu” de Las Villas http://orcid.org/0000-0003-4817-5777
  • Alfredo Marin-Cárdenas Universidad Central “Marta Abreu” de Las Villas
  • Mabel González-Pérez Universidad Central “Marta Abreu” de Las Villas
Keywords: Lactic acid-bacteria, morpho-teintorial characteristic, weight gain, yeasts, health.

Abstract

Probiotic additives contain beneficial microorganisms that included in the diet, in sufficient quantities, have a positive effect on the health of the host. However, high costs have limited its use in pork producers in developing countries. With the objective of evaluating the bioproductive behavior in breeding sows and their offspring when bioprepared in the diet is complemented. We used 12 hybrid breeding sows CC21 (Yorkshire-Landrace/L35 Duroc) and their descendants, divided into two groups of six animals each. T1, control and T2, treatment. T2, contained Lactobacillus acidophilus, Streptococcus thermophilus and Kluyveromyces fragilis (L-4 UCLV). A completely randomized design was used, the weight gained and the reproductive behavior in the offspring were evaluated; Weight gain in piglets from birth to pre-fattening, diarrheal cases and mortality, and the morpho-teintorial characterization of the microorganisms from the rectal swab. The weight gain in mother sows and piglets was higher (P>0.05) in T2. The diarrheic cases and mortality were lower (P<0.05) in T2; with the morpho-teintorial characterization, higher microbial load (P<0.05) was observed mainly coconuts in chain and isolated, short and chain bacilli positive gram and yeasts. It is concluded that the inclusion of bioprepared in the diet of the breeding sows and their offspring improves the bioproductive behavior, reduces diarrhea and deaths and increases the microbial load with corresponding morpho-teintorial characteristic to Bacilli, gram-positive cocci and yeasts.

Downloads

Download data is not yet available.

References

Ayala, L., Bocourt, R., Castro, M., Dihigo, L. E., Milián, G., Herrera, M., & Ly, J. (2014). Desarrollo de órganos digestivos en cerditos descendientes de madres que consumieron un probiótico, antes del parto y durante la lactancia. Revista Cubana de Ciencia Agrícola. 48(2): 133-136.

Castro, M., Martínez, M. (2015). La alimentación porcina con productos no tradicionales. Revista Cubana de Ciencia Agrícola. 49(2): 189-196

Chaytor, A.C., Hansen, J.A., Heugten, E.V., Todd-See, T. & Woo-Kim, K. (2011). Occurrence and Decontamination of Mycotoxins in Swine Feed. Asian-Australasian Journal of Animal Sciences. 24(5): 723-738. doi: https://doi.org/10.5713/ajas.2011.10358

Coates, J., Corns, P.J., Juarez, A., MacDonald, R., McCulley, N., Melody, B., Minton, A., Molinari, R., Montes De Oca, H., Mosqueira, P., Neill, C., Pinilla, J.C., Piva, J. & Teuber, R. (2013). Manual PIC de Manejo de Hembras y Primerizas. Hendersonville: PIC North America.

Cottney, P.D., Magowan, E., Ball, E. & Gordon A. (2012). Effect of oestrus number of nulliparous sows at first service on first litter and lifetime performance. Livestock Science. 146(1): 5-12. doi: http://dx.doi.org/10.1016/j.livsci.2012.02.013

Duncan, D.B. (1955). Multiple range and multiple F test. Biometrics. 11(1): 1-42.

Ek-Mex, J.E., Segura-Correa, J.C., Alzina-López, A. & Aké-López R. (2015). Factores ambientales que afectan algunas características postdestete de las cerdas en el trópico de México. Archivo Medicina Veterinaria. 47(1): 45-51. doi: 10.4067/S0301-732X2015000100009

García, A.C., De Loera, Y.G., Yagüe, A.P., Guevara, J.A. & García, C. (2012). Alimentación práctica del cerdo. Revista Complutense de Ciencias Veterinarias. 6(1): 21-47. doi: http://dx.doi.org/10.5209/rev_RCCV.2012.v6.n1.38718

González, M., Figueroaa, J.L., Vaquerab, H., Sánchez-Torresa, M.T., Ortegaa, M.E., Copadoc, J.M.F. & Martínez, J.A. (2016). Meta análisis del efecto de dietas bajas en proteína y adicionada con aminoácidos sintéticos para cerdos machos castrados en finalización. Archivos de medicina veterinaria. 48(1): 51-59. doi: http://dx.doi.org/10.4067/S0301-732X2016000100007

Gutiérrez, L.A., Bedoya, O. & Ríos M. (2014). Evaluación de parámetros productivos en cerdos (Sus scrofa domesticus) suplementados con microorganismos probióticos nativos. Journal of Agriculture and Animal Sciences. 3(2): 48-55.

Ihara, Y., Hyodo, H., Sukegawa, S., Murakami, H. & Morimatsu, F. (2013) Isolation, characterization, and effect of administration in vivo, a novel probiotic strain from pig feces. Animal Science Journal. 84(5): 434-441. doi: 10.1111/asj.12020

Kandler, O. & Weiss, N. (1992). Regular nonsporing Gram-positive rods. pp. 1208-1260. En: P. H. A. Sneath, M. S. Mair, M. E. Sharpe y J. G. Holt. Bergey´s Manual of Systematic Bacteriology, 10th edition, vol. 2. Baltimore: The Williams and Wilkins Co.

Lähteinen, T., Rinttilä, T., Koort, M.K., Kant. R., Levonen, K., Jakava-Viljanen, M., Björkroth, J. & Palva, A. (2015). Effect of a multi species lactobacillus formulation as a feeding supplement on the performance and immune function of piglets. Livestock Science. 180(1): 164-171. doi: http://dx.doi.org/10.1016/j.livsci.2015.07.016

Londoño, A., Lallès, J.P. & Parra, J. (2016). Effect of probiotic strain addition on digestive organ growth and nutrient digestibility in growing pigs. Revista Facultad Nacional de Agronomía. 69(2): 7911-7918. doi: 10.15446/rfna.v69n2.59136.

Miranda, J.E., Marin, A. & Baño, D. (2017). Elaboration of a bioprepared with probiotic effect from a mixed culture of lactic bacteria and yeasts. Revista Bionatura. 2(1): 273-275. doi: 10.21931/RB/2017.02.01.6

NRC - National Research Council. (1998). The nutrient requirements of beef cattle. 10th ed. Washington, DC, USA: National Academy Press.

Patil, A.K., Kumar. S., Verma, A.K. & Baghel, P.S. (2015). Probiotics as Feed Additives in Weaned Pigs. Livestock Research International. 3(2): 31-39.

Rajput, I. R., Li, L.Y., Xin, X., Wu, B.B., Juan, Z.L., Cui, Z.W. & Li, W.F. (2013). Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poultry science. 92(4): 956-965. doi: 10.3382/ps.2012-02845.

Sun, Y., Park, I., Guo, J., Weaver, A. & Woo, S. (2015). Impacts of low level aflatoxin in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Journal Animal Nutrition. 1(3): 177-183. doi: 10.1016/j.aninu.2015.08.012

Vélez-Zea, J.M., Gutiérrez-Ramírez, L.A. & Montoya-Campuzano, O.I. (2015). Bactericidal Evaluation of Lactic Acid Bacteria Isolated in Sow Colostrum Against Salmonella tiphymurium. Revista Facultad Nacional de Agronomía, Medellín. 68(1): 7481-7486. doi: https://dx.doi.org/10.15446/rfnam.v68n1.47834

Yin, J., Ren, W., Duan, J., Wu, L., Chen, S., Li, T., Yin, Y. & Wu, G. (2014). Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids. 46(4): 883-892. doi: 10.1007/s00726-013-1643-5

Zhao, P.Y., Jung, J.H. & Kim, I.H. (2015). Effect of mannan oligosaccharides and fructan on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Journal Animal of Science. 90(3): 33-839. doi: 10.2527/jas.2011-3921.

Published
2018-06-26
How to Cite
Miranda-Yuquilema, J., Marin-Cárdenas, A., & González-Pérez, M. (2018). The bioproductive behavior of breeding sows and their offspring fed with probiotic additive. Revista De Ciencias Agrícolas, 35(1), 69-81. https://doi.org/10.22267/rcia.183501.84
Section
Research and scientific and technological innovation article