Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L

  • Maria José González Armijos Universidad Nacional de Loja
  • Luis Viteri Jumbo Universidade Federal de Viçosa
  • Lêda Rita Faroni Universidade Federal de Viçosa
  • Eugenio Eduardo Oliveira Universidade Federal de Viçosa
  • Adolfo Fernando Flores Universidad Nacional de Loja https://orcid.org/0000-0002-1434-5160
  • Fernanda Heleno Serviço Autônomo de Água e Esgoto – SAAE https://orcid.org/0000-0002-0423-5662
  • Khalid Haddi Universidade Federal De Lavras https://orcid.org/0000-0002-2655-4365
Keywords: Bean, bioactivity, cowpea weevil, natural compound


The protection of stored products from insect damages, when accomplished, is mostly relying on the application of synthetic insecticides with serious health and environmental issues in addition to risks of selection of resistant insect populations associated with such practice. The use of plants derived compounds have been presented as sound strategy for sustainable insect pest management. Eugenol is an aromatic component of natural occurrence in essential oils of numerous plants. known for its repellent and insecticidal bioactivities against different insect species. Here, we investigated the fumigant application of eugenol to control the cowpea weevil Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) by assessing toxicity, effects on biological development (including emergence inhibition) and repellency to these weevil. Besides a good fumigant insecticidal activity, eugenol exposure resulted in  a dose-dependent decrease of  the growth rate of C. maculatus  associated with a steady reduction in bean mass losses. Additionally, inhibition of offspring was upper 50% when adults were exposed to lethal and sublethal concentrations. significant inhibition of the offspring emergence was achieved after the exposure of parental adults to lethal and sublethal doses of eugenol. Furthermore, adult weevils were repelled away from beans exposed to high dose (LD99) of eugenol in contrast with their attraction to the beans treated with lower dose (LD50).  Our findings suggest that eugenol has potential as control tool to be used in sustainable management startegies of C. maculatus.


Download data is not yet available.


Athanassiou, C.G., Rani, P.U. & Kavallieratos, N.G. (2014). The use of plant extracts for stored product protection, In: Singh, D. (Ed.). Advances in plant biopesticides. pp. 131-147. New Delhi: Springer.

Atkinson, R.G. (2018). Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. Journal of Agricultural and Food Chemistry. 66(10): 2259-2272. doi: 10.1021/acs.jafc.6b04696.

Baker, B.P. & Grant, J.A. (2018). Eugenol Profile. Recovered from https://ecommons.cornell.edu/bitstream/handle/1813/56125/eugenol-MRP-NYSIPM.pdf?sequence=1&isAllowed=y

Chang, S. T. & Cheng, S. S. (2002). Antitermitic activity of leaf essential oils and components from Cinnamomum osmophleum. Journal of Agricultural and Food Chemistry. 50(6): 1389-1392. doi: 10.1021/jf010944n.

Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic & medicinal chemistry, 17(12), 4022-4034. doi: 10.1016/j.bmc.2009.01.046

El-Maati, M.F.A., Mahgoub, S.A., Labib, S.M., Al-Gaby, A.M., Ramadan, M.F. (2016). Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. European Journal of Integrative Medicine. 8(4): 494-504. doi: 10.1016/j.eujim.2016.02.006

Enan, E. (2001). Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 130(3): 325-337. doi: 10.1016/S1532-0456(01)00255-1

Enan, E.E. (2005). Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology. 35(4): 309-321. doi: 10.1016/j.ibmb.2004.12.007

Freitas, R.C.P., Faroni, L.R.D.A., Haddi, K., Viteri Jumbo, L.O., Oliveira, E.E. (2016). Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: Toxicity, emergence inhibition and repellency. Journal of Stored Products Research 69: 257-264. doi: 10.1016/j.jspr.2016.09.006

Gbaye, O.A., Oyeniyi, E.A., Ojo, O.B. (2016). Resistance of Callosobruchus maculatus (Fabricius)(Coleoptera: Bruchidae) populations in Nigeria to dichlorvos. Jordan J. Biol. Sci. 9(1): 41-46. doi: 10.12816/0027007

Germinara, G.S., De Cristofaro, A., Rotundo, G. (2015). Repellents effectively disrupt the olfactory orientation of Sitophilus granarius to wheat kernels. Journal of Pest Science. 88(4): 675-684. doi: 10.1007/s10340-015-0674-y

Haddi, K., Faroni, L.R., Oliveira, E.E. (2017). Cinnamon Oil, in: Leo M.L. Nollet, H.S.R. (Ed.) Green Pesticides Handbook, Essential Oils for Pest Control pp. 117-150. 1st Edition. Boca Raton: CRC Press. 523p.

Haddi, K., Jumbo, L.V., Costa, M., Santos, M., Faroni, L., Serrão, J., Oliveira, E. (2018). Changes in the insecticide susceptibility and physiological trade-offs associated with a host change in the bean weevil Acanthoscelides obtectus. Journal of Pest Science. 91(1): 459-468. doi: 10.1007/s10340-017-0860-1

Isman, M.B., Grieneisen, M.L. (2014). Botanical insecticide research: many publications, limited useful data. Trends in Plant Science. 19(3): 140-145. doi: 10.1016/j.tplants.2013.11.005

Iturralde-García, R.D., Borboa-Flores, J., Cinco-Moroyoqui, F.J., Riudavets, J., Del Toro-Sánchez, C.L., Rueda-Puente, E.O., Martínez-Cruz, O., Wong-Corral, F.J. (2016). Effect of controlled atmospheres on the insect Callosobruchus maculatus Fab. in stored chickpea. Journal of Stored Products Research 69: 78-85. doi: 10.1016/j.jspr.2016.06.004

Kadakol, J. C. & Kamanavalli, C. M. (2010). Biodegradation of eugenol by Bacillus cereus strain PN24. Journal of Chemistry. 7(S1): S474-S480.

Kafle, L. & Shih, C.J. (2013). Toxicity and repellency of compounds from clove (Syzygium aromaticum) to red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Journal of Economic Entomology. 106(1): 131-135. doi: 10.1603/EC12230

Kaliramesh, S., Chelladurai, V., Jayas, D., Alagusundaram, K., White, N. & Fields, P. (2013). Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research 52: 107-111. doi: 10.1016/j.jspr.2012.12.005

Kang, J.K., Pittendrigh, B.R. & Onstad, D.W. (2013). Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae). Journal of Economic Entomology. 106(6): 2473-2490. doi: 10.1603/EC13340

Koeduka, T., Sugimoto, K., Watanabe, B., Someya, N., Kawanishi, D., Gotoh, T., Ozawa, R., Takabayashi, J., Matsui, K. & Hiratake, J. (2014). Bioactivity of natural O‐prenylated phenylpropenes from Illicium anisatum leaves and their derivatives against spider mites and fungal pathogens. Plant Biology. 16(2): 451-456. doi: 10.1111/plb.12054

Larson, N.R., Carlier, P.R., Gross, A.D., Islam, R.M., Ma, M., Sun, B., Totrov, M.M., Yadav, R. & Bloomquist, J.R. (2017). Toxicology of potassium channel-directed compounds in mosquitoes. NeuroToxicology. 60: 214-223. doi: 10.1016/j.neuro.2016.05.021

Lopes, L.M., Sousa, A.H., Santos, V.B., Silva, G.N. & Abreu, A.O. (2018). Development rates of Callosobruchus maculatus (Coleoptera: Chrysomelidae) in landrace cowpea varieties occurring in southwestern Amazonia. Journal of Stored Products Research, 76: 111-115. doi: 10.1016/j.jspr.2018.01.008

Massango, H., Faroni, L., Haddi, K., Heleno, F., LO, V.J. & Oliveira, E. (2017). Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus. Journal of Pest Science. 90(2): 723-733. doi: 10.1007/s10340-016-0826-8

Melo, B.A.d., Molina-Rugama, A.J., Haddi, K., Leite, D.T. & Oliveira, E.E.d. (2015). Repellency and bioactivity of Caatinga biome plant powders against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Florida Entomologist. 98(2): 417-423. doi: 10.1653/024.098.0204

Mishra, S., Sachan, A., & Sachan, S. G. (2013). Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. Journal of industrial microbiology & biotechnology. 40(6): 545-550. doi: 10.1007/s10295-013-1255-9

Mkenda, P.A. & Ndakidemi, P.A. (2014). Pesticidal efficacy of four botanical pesticides on survival, oviposition and progeny development of bruchid, Callosobruchus maculatus in stored cowpea, Vigna unguiculata. International Journal of Plant & Soil Science. 3(12): 1504-1523.

Nattudurai, G., Baskar, K., Paulraj, M.G., Islam, V.I.H., Ignacimuthu, S. & Duraipandiyan, V. (2017). Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environmental Science and Pollution Research. 24(2): 1619-1629. doi: 10.1007/s11356-016-7857-9.

Pavela, R. & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science. 21(12): 1000-1007. doi: 10.1016/j.tplants.2016.10.005

Polatoğlu, K. & Karakoç, Ö.C. (2016). Chapter 5 - Biologically Active Essential Oils against Stored Product Pests A2. In: Preedy, V. R., Essential Oils in Food Preservation, Flavor and Safety. pp. 39-59. San Diego: Academic Press.

Purohit, P., Jayas, D., Yadav, B., Chelladurai, V., Fields, P. & White, N. (2013). Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). Journal of Stored Products Research. 53: 19-22. doi: 10.1016/j.jspr.2013.01.002

Reis, L.S., Mantello, G.A., Macedo, M.J., Gelfuso, A.E., da Silva, P.C., Fachin, L.A., Cardoso, M.A. & Beleboni, O.R. (2016). Typical Monoterpenes as Insecticides and Repellents against Stored Grain Pests. Molecules. 21(3): 258. doi: 10.3390/molecules21030258

Ribeiro, N., Camara, C. & Ramos, C. (2016). Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chilean Journal of Agricultural Research. 76(1): 71-76. doi: 10.4067/S0718-58392016000100010

Saad, M.M., Abou-Taleb, H.K. & Abdelgaleil, S.A. (2018). Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Applied Entomology and Zoology, 53(2): 173-181 . doi: 10.1007/s13355-017-0532-x

Silva, S., Haddi, K., Viteri Jumbo, L. & Oliveira, E. (2017). Progeny of the maize weevil, Sitophilus zeamais, is affected by parental exposure to clove and cinnamon essential oils. Entomologia Experimentalis et Applicata. 163(2): 220-228. doi: 10.1111/eea.12559

Soujanya, P.L., Sekhar, J.C., Kumar, P., Sunil, N., Prasad, C.V. & Mallavadhani, U.V. (2016). Potentiality of botanical agents for the management of post harvest insects of maize: a review. Journal of Food Science and Technology. 53(5): 2169-2184. doi: 10.1007/s13197-015-2161-0

Viteri Jumbo, L.O., Faroni, L.R., Oliveira, E.E., Pimentel, M.A. & Silva, G.N. (2014). Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Industrial Crops and Products 56, 27-34. doi: 10.1016/j.indcrop.2014.02.038

Viteri Jumbo, L.O., Haddi, K., Faroni, L. R. D., Heleno, F. F., Pinto, F. G., & Oliveira, E. E. (2018). Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PloS one. 13(11): e0207618. doi: 10.1371/journal.pone.0207618

Walthall, W.K. & Stark, J.D. (1997). Comparison of two population‐level ecotoxicological endpoints: The intrinsic (rm) and instantaneous (ri) rates of increase. Environmental Toxicology and Chemistry. 16(5): 1068-1073. doi: 10.1002/etc.5620160529

Xie, Y., Yang, Z., Cao, D., Rong, F., Ding, H., Zhang, D. (2015). Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Industrial Crops and Products 77, 780-786. doi: 10.1016/j.indcrop.2015.09.044

Zeringóta, V., Senra, T.O.S., Calmon, F., Maturano, R., Faza, A.P., Catunda-Junior, F.E.A., Monteiro, C.M.O., de Carvalho, M.G. & Daemon, E. (2013). Repellent activity of eugenol on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitology Research. 112(7): 2675-2679. doi: 10.1007/s00436-013-3434-z

How to Cite
González Armijos, M., Viteri Jumbo, L., Faroni, L., Oliveira, E., Flores, A., Heleno, F., & Haddi, K. (2019). Fumigant toxicity of eugenol and its negative effects on biological development of Callosobruchus maculatus L. Revista De Ciencias Agrícolas, 36(1), 5-15. https://doi.org/10.22267/rcia.193601.94
Research and scientific and technological innovation article