Hystometric evaluation of nickel chronic exposure effects on large instestine of adult Wistar male rats

  • Maria Luiza Assis Rodrigues Universidade Federal de Viçosa http://orcid.org/0000-0002-1828-9960
  • Sirlene Souza Rodrigues Sartori Universidade Federal de Viçosa http://orcid.org/0000-0003-0779-5793
  • Priscila Izabel Santos Totaro Universidade Federal de Minas Gerais
  • Sérgio Luis Pinto da Matta Universidade Federal de Viçosa
Keywords: nickel contamination, toxicology, hystology, morphology

Abstract

The ingestion of considerable amounts of water or food contaminated with nickel can be very toxic. The present work was conducted aiming to evaluate the effects of nickel exposures on ascending colon of adult Wistar male rats at hystometric level. We used 12 animals that were divided in a control (ingested uncontaminated water) and a nickel-contaminated (i.e., 25 mg de nickel/L of water) groups. Nickel chloride was offered in declorinated water and the experiment had a 56 days exposure period. A portion of the ascending colon was removed of the animals and subjected to hystological labelling processes using blue toluidin (for general hystometric description), Alcian Blue (AB, for acid mucins) and periodic acid-Schiff (PAS) technique (for neutral mucins). The potential differences between groups were desgined by applying the Whitney test and t test (p < 0.05). The crypts were smaller for the nickel-contaminated group, even though these organism exhibited broader and higher crypts. Nickel-contaminated animals exhibited a smaller amount of calyceform cells with AB and PAS positive reactions as well as a less mucus quantities when compared with nickel-uncontaminated animals. Such reductions on the amount of calyceform cells with AB and PAS positive reactions may be related wiht the shallower crypts, which possibly reduced the synthesis and secretion of mucins, compromissing the functional aspects (e.g., lubrification and intestinal mucosa protection) of the nickel-contaminated large intestines. Interestingly, the wider and higher crypts and higher epithelium collumn on the nickel-contaminated animals may represent a relevant trade-off for the intestinal mucosa protection.

Downloads

Download data is not yet available.

References

Ahmad, M. S. & Ashraf, M. (2011). Essential roles and hazardous effects of nickel in plants. Rev. Environmental Contamination and Toxicology. 214: 125-167. doi: http://dx.doi.org/10.1007/978-1-4614-0668-6_6.

Bertini, I., Sigel, A. & Sigel, H. (2001). Handbook on Metalloproteins. 1th ed. New York: Marcel Dekker. 1182p.

Clancy, H. & Costa, M. (2012). Nickel: A pervasive carcinogen. Future Oncology. 8 (12): 1507–1509. doi:10.2217/fon.12.154.

Corfield, A.P., Myerscough, N., Longman, R., Sylvester, P., Arul, S. & Pignatelli, M. (2000). Mucins mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut. 47 (4): 589-594. doi: http://dx.doi.org/10.1136/gut.47.4.589.

EMEA, Guideline on the Specification Limits for Residues of Metal Catalysts ormetal Reagents, European Medicines Agency. (2008). Retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-specification-limits-residues-metal-catalysts-metal-reagents_en.pdf.

Filipe, M. I. (1969). Value of histochemical reactions for mucosubstances in the diagnosis of certain pathological conditions of the colon and rectum. Gut. 10 (7): 577-586. doi: http://dx.doi.org/10.1136/gut.10.7.577.

Finnie, I.A., Dwarakanath, A.D., Taylor, B.A. & Rhodes, J.M. (1995). Colonic mucins synthesis is increased by sodium butyrate. Gut. 36 (1): 93-99. doi: http://dx.doi.org/10.1136/gut.36.1.93.

Gartner, L.P. & Hiatt, J.L. (2017). Tratado de histologia. 4th ed. Rio De Janeiro: Elsevier. 325p.
Gaudier, E., Rival, M., Buisine, M.P., Robineau, I. & Hoebler, C. (2009). Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiological research. 58 (1): 111-119.

Gerbino, E., Mobili, P., Tymczyszyn, E., Frausto-Reyes, C., Araujo-Andrade, C. & Gómez-Zavaglia, A. (2012). Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir. Journal of applied microbiology. 112 (2): 363-371. doi: 10.1111/j.1365-2672.2011.05210.

Glotzer, D.J., Glick, M.E. & Goldman, H. (1981). Proctitis and colitis following diversion of fecal stream. Gastroenterology. 80 (3): 438-441.

Gonzalez, K.R. (2016). Toxicologia do Níquel. Revista intertox de toxicologia risco ambiental e sociedade. 9 (2): 30-54.

Haber, L.T., Erdreicht, L., Diamond, G.L., Maier, A.M., Ratney, R., Zhao, Q. & Dourson, M.L. (2000). Hazard identification and dose response of inhaled nickelsoluble salts. Regul Toxicol Pharmacol. 31 (2): 210-30. doi:10.1006/rtph.2000.1377.

Hoebler, C., Gaudier, E., De Coppet, P., Rival, M. & Cherbut, C. (2006). MUC genes are differentially expressed during onset, maintenance of inflammation in dextran sodium sulfate-treated mice. Dig Dis Sci. 51 (2): 381-389. doi: http://dx.doi.org/10.1007/s10620-006-3142-y.

Huang, Z., Pan, X., Wu, P., Han, J. & Chen, Q. (2014). Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control. 36 (1): 248-252. doi: http://dx.doi.org/10.1016/j.foodcont.2013.08.036.

Junqueira, L.C. & Carneiro, J. (2013). Histologia Básica: Texto E Atlas. 12 ed. Rio De Janeiro: Guanabara Koogan, p. 280.

Keli, E., Bouchoucha, M., Devroede, G., Carnot, F., Ohrant, T., Cugnenc, P.H. (1997) Diversion-related experimental colitis in rats. Dis Colon Rectum. 40 (2): 222-228.

Kim, Y.S. & Gum, J.R. (1995). Diversity of mucin genes, structure, function, and expression. Gastroenterology. 109 (3): 999-1013.

Lowe, J.S. & Anderson, P.G. (2015). Stevens & Lowe´s Human Histology. 4th ed. Philadelphia: Elsevier Mosby. 429p.

Mello, R.O., Fonte, F.P., Silva, C.M.G., Pereira, J.A., Margarido, N.F. & Martinez, C.A.R. (2012). Avaliação do número de células caliciformes nas criptas da mucosa colônica com e sem trânsito intestinal.  Revista do Colégio Brasileiro de Cirurgiões. Cir. 39 (2): 139-45. doi: 10.1590/S0100-69912012000200010.

Monachese, M., Burton, J. P. & Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics. Appl. Environ. Microbiol. 78 (18): 6397-6404. doi: http://dx.doi.org/10.1128/AEM.01665-12.

Nielsen, F.H. & Ollerich, D.A. (1974). Proceedings: Nickel: a new essential trace elemento. Federation proceedings. 33 (6): 1767-1772.

Rocha, C.H.B. & Azevedo, L.P. (2015). Assessing the presence of heavy metals in surface Waters of the São Mateus Brook Basin, Juiz de Fora (MG), Brazil. Revista Espinhaço. 4 (2): 33-44.

Schmidt, M. & Goebeler, M. (2011). Nickel allergies: paying the toll for innate immunity. J. Mol. Med. (Berl). 89 (10): 961-970. doi: 10.1007/s00109-011-0780.

Sunderman, F.W., Hopfer, S.M., Sweeney, K.R., Marcus, A.H., Most, B.M. & Creason, J. (1989). Nickel absorption and kinetics in human volunteers. Proc Soc Exp Biol Med. 191(1): 5-11. doi: 10.3181/00379727-191-42881
Published
2019-10-16
How to Cite
Assis Rodrigues, M., Rodrigues Sartori, S., Santos Totaro, P., & Pinto da Matta, S. (2019). Hystometric evaluation of nickel chronic exposure effects on large instestine of adult Wistar male rats. Revista De Ciencias Agrícolas, 36(E). Retrieved from http://revistas.udenar.edu.co/index.php/rfacia/article/view/4878
Section
Research and scientific and technological innovation article