BIOLOGICAL FILTRATION METHODS IN RECIRCULATING AQUACULTURE SYS-TEMS AS AN ALTERNATIVE FOR MAINTAINING WATER QUALITY: A REVIEW

Authors

DOI:

https://doi.org/10.22267/revip.2181.26

Keywords:

Hydrobiological species, Recirculating system, biofiltration, aquaculture.

Abstract

Production of fish and shrimp in recirculation systems has become a very important alternative to traditional open systems, based on the reuse of water previously treated with physical, chemical, and biological processes. For recirculating system to be efficient and provide a suitable environment, it must come along with five basic processes: water circulation, oxygenation, removal of suspended solids, biofiltration and gas exchange. Biofiltration is an important phase of any recorculating aquaculture system (RAS) where living organisms, mainly bacteria, are used to remove TAN (total ammonia nitrogen) from water, toxic to fish and shrimp in low concentrations. Therefore, the sizing of a biofilter is based on the characteristics of the effluent (organic load, concentration of TAN, Nitrites, BOD, COD, etc.). There are a variety of biological filters that are used in aquaculture to provide a surface area that allows bacteria to grow in a biofilm and to use up toxic waste, improving the water quality in the culture. Some biological filters used in RAS are trickling filters, rotary drum filters, submerged fixed media filters, granular media biofilters, aerobic fluidized bed reactors, moving bed biofilm reactors. In this work, a review is made of the biological filtration methods used in RAS as an alternative to maintain water quality.

Downloads

Download data is not yet available.

Author Biographies

Paula Ximena Marcillo-Caguasango, Ingeniero en Producción Acuícola

Universidad de Nariño, Pasto, Colombia.

Jorge Ricardo Sacro-Arciniegas, Universidad de Nariño, Pasto, Colombia.

Ingeniero en Producción Acuícola

Yemall Alexander Maigual-Enriquez, Ingeniero en Producción Acuícola, M.Sc, PhD,

Universidad de Nariño, Universidad Cooperativa de Colombia, Pasto, Colombia.

References

1. Watari T, Nakamura Y, Kotcharoen W, Hirakata Y, Satanwat P, Pungrasmi W. Application of down-flow hanging sponge – Upflow sludge blanket system for nitrogen removal in Epinephelus bruneus closed recirculating aquaculture system. Aquaculture. 2021; 532:1–9.
2. Cancino-Madariaga B, Hurtado CF, Ruby R. Effect of pressure and pH in ammonium retention for nanofiltration and reverse osmosis membranes to be used in recirculation aquaculture systems (RAS). Aquac Eng. 2011;45(3):103–8.
3. Vidal M, Sep D, Torres C, Villouta G, Ruiz P. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. 2019;1–17.
4. Prehn J, Waul CK, Pedersen LF, Arvin E. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system. Water Res. 2012;46(11):3516–24.
5. Jiang W, Tian X, Li L, Dong S, Zhao K, Li H. Temporal bacterial community succession during the start-up process of biofilters in a cold-freshwater recirculating aquaculture system. Bioresour Technol. 2019;287(May).
6. Kinyage JPH, Pedersen LF. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters. Aquac Eng. 2016; 75:51–5: http://dx.doi.org/10.1016/j.aquaeng.2016.10.006
7. Sánchez O. IA, Matsumoto T. Hydrodynamic characterization and performance evaluation of an aerobic three phase airlift fluidized bed reactor in a recirculation aquaculture system for Nile Tilapia production. Aquac Eng. 2012; 47:16–26: http://dx.doi.org/10.1016/j.aquaeng.2011.12.006
8. Palacios YM, Winfrey BK. Three mechanisms of mycorrhizae that may improve stormwater biofilter performance. Ecol Eng. 2020;(October):106085. https://doi.org/10.1016/j.ecoleng.2020.106085
9. Hüpeden J, Wemheuer B, Indenbirken D, Schulz C, Spieck E. Taxonomic and functional profiling of nitrifying biofilms in freshwater, brackish and marine RAS biofilters. Aquac Eng. 2020;90(May).
10. Shahar B, Guttman L. Integrated biofilters with Ulva and periphyton to improve nitrogen removal from mariculture effluent. Aquaculture. 2021; 532:736011. https://doi.org/10.1016/j.aquaculture.2020.736011
11. Suhr KI, Pedersen PB. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS. Aquac Eng. 2010;42(1):31–7.
12. Sanchez I, Rebelo D, Burbano A, Garcia R, Guerrero C. Eficiencia de consorcios microbianos para tratamiento de aguas residuales en un sistema de recirculación acuícola. Biotecnol en el Sect Agropecu y Agroindustrial. 2013;11(1):245–54.
13. Liu W, Ke H, Xie J, Tan H, Luo G, Xu B. Characterizing the water quality and microbial communities in different zones of a recirculating aquaculture system using biofloc biofilters. Aquaculture. 2020;529.
14. Galindo A, Toncel E, Rincón N. Evaluación de un filtro biológico como unidad de posttratamiento de aguas residuales utilizando conchas marinas como material de soporte. Rev ION. 2017;29(2):37–48.
15. Dorado AD, Lafuente FJ, Gabriel D, Gamisans X. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ Technol. 2010;31(2):193–204.
16. Lekang O. Recycling Aquaculture Sistemas: Traditional Recirculating Water Systems. 2020;257–74.
17. Iván Sánchez O, Dolly Revelo R, Álvaro Burbano M, Roberto García C, Camilo Guerrero R, Diana Beltrán T. Performance of different biofilters in a recirculating system for rainbow trout farming. Rev MVZ Cordoba. 2016;21(2):5426–40.
18. Choi HJ, Lee AH, Lee SM. Comparison between a moving bed bioreactor and a fi xed bed bioreactor for biological phosphate removal and denitri fi cation. 2012;1(3):1834–8.
19. Liu H, Che X, Zhang Y. Performance of sequencing microbead biofilters in a recirculating aquaculture system. Aquac Eng. 2013; 52:80–6.
20. Rusten B, Eikebrokk B, Ulgenes Y, Lygren E. Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng. 2006;34(3):322–31.
21. Matsumoto T, Enriquez YAM. Eficiência na remoção de NAT, DBO e DQO utilizando reator aeróbio de leito fluidizado com circulação em tubos concêntricos associado ao decantador de coluna em uma produção intensiva de tilápia. Eng Sanit e Ambient 2016;21(3):60914:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S141341522016000300609&lng=pt&tlng=pt
22. Gregory SP, Dyson PJ, Fletcher D, Gatland P, Shields RJ. Nitrogen removal and changes to microbial communities in model flood/drain and submerged biofilters treating aquaculture wastewater. Aquac Eng. 2012; 50:37–45.
23. Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci Total Environ. 2019; 648:1244– 56.
24. Yogev U, Vogler M, Nir O, Londong J, Gross A. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer. Sci Total Environ. 2020; 722:137949.
25. Krom MD, Ben David A, Ingall ED,Benning LG, Clerici S, Bottrell S. Bacterially mediated removal of phosphorus and cycling of nitrate and sulfate in the waste stream of a "zero-discharge" recirculating mariculture system. Water Res. 2014; 56:109–21.
26. Wu H, Zhang Y, Yuan Z, Gao L. A review of phosphorus management through the food sistema: identifying the roadmap to ecological agriculture. J Clean Prod. 2015;
27. MADS. Decreto 1076 de 2015 -Sector Ambiente y Desarrollo Sostenible (2015). Colombia: Ministerio de Ambiente y Desarrollo Sostenible. Retrieved from https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153

Published

2022-06-24

Issue

Section

Revisión Literaria