The omics sciences used for crop improvement programs

Authors

DOI:

https://doi.org/10.22267/rcia.183502.92

Keywords:

Phylogenetics, genomics, MAS, Transcriptomics

Abstract

Population growth, climate change and the loss of ecosystem services are some of the challenges facing agriculture in recent decades to ensure long-term food security. Plant breeding programs can contribute to the development of genotypes adapted to new environmental conditions. The development and implementation of high-throughput sequencing technologies have accelerated breeding programs for crops that feed the world's population. This article reviews the main technological developments in “omics” used for genetic crop improvement. Here, we briefly discuss four technologies and their applications in the field of agriculture: phylogenomics, comparative genomics, comparative transcriptomics and marker assisted selection. These approaches allow to understand the evolutionary history of crops and their wild relatives, as well as identify the structure and function of genes of interest in agriculture. In addition, these help to reveal the expression of important genes in the domestication process and characterize individuals of agricultural species using molecular approaches that allow streamlining selection processes. It is necessary to implement genetic improvement programs that include the use of some or all of these technologies with the purpose of accelerating processes that can contribute to current agricultural challenges.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology. 215(3): 403-410.

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., Meng. D., Platt, A., Tarone, A. M., Hu, T. T., Jiang, R., Muliyati, N. W., Zhang, X., Amer, M. A., Baxter, I., Brachi, B., Chory, J., Dean, C., Debieu, M., de Meaux, J., Ecker, J. R., Faure, N., Kniskern, J. M., Jones, J. D., Michael, T., Nemri, A., Roux, F., Salt, D. E., Tang, C., Todesco, M., Traw, M.B., Weigel, D., Marjoram, P., Borevitz, J.O., Bergelson, J. & Nordborg, M. (2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 465(7298): 627-631. doi: https://10.1038/nature08800

Bakker, E., Borm, T., Prins, P., van der Vossen, E., Uenk, G., Arens, M., Boer, J., Eck, H., Muskens, M., Vossen, J., Linden, G., Ham, R., Klein-Lankhorst, R., Visser, R., Smant, G, Bakker, J. & Goverse, A. (2011). A genome-wide genetic map of NB-LRR disease resistance loci in potato. Theoretical and Applied Genetics. 123(3): 493-508. doi: 10.1007/s00122-011-1602-z

Bolger, M. E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B. & Mayer, K. F. (2014). Plant genome sequencing - applications for crop improvement. Current Opinion in Biotechnology. 26: 31-37. doi: 10.1016/j.copbio.2013.08.019

Bonham-Carter, O., Steele, J. & Bastola, D. (2013). Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis. Briefings in Bioinformatics. 15(6): 890-905. doi: https:// 10.1093/bib/bbt052

Borozan, I., Watt, S. & Ferretti, V. (2015). Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification. Bioinformatics. 31(9): 1396–1404. doi: https:// 10.1093/bioinformatics/btv006

Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 34(5): 525-527. doi: https://10.1038/nbt.3519

Brozynska, M., Furtado, A. & Henry, R. J. (2015). Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal. 14(4): 1070-1085. doi: https:// 10.1111/pbi.12454

Buermans, H. P. J. & den Dunnen, J. T. (2014). Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1842(10): 1932-1941. doi: https://10.1016/J.BBADIS.2014.06.015

Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. (2011). Stacks: building and genotyping Loci de novo from short-read sequences. G3: Genes, genomes, genetics. 1(3): 171-182. doi: https:// 10.1534/g3.111.000240

Chan, C. X. & Ragan, M. A. (2013). Next-generation phylogenomics. Biology Direct. 8(3). doi: 10.1186/1745-6150-8-3

Clark, R. M., Wagler, T. N., Quijada, P. & Doebley, J. (2006). A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genetics. 38(5): 594-597. doi: 10.1038/ng1784

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Wojciech, M., Gaffney, D., Elo, L., Zhang, X. & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology. 17(1): 13. doi: 10.1186/s13059-016-0881-8

Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics. 12: 499-510. doi: https://doi.org/10.1038/nrg3012

Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C. & Guarino, L. (2017). Past and Future Use of Wild Relatives in Crop Breeding. Crop Science. 57(3): 1070-1082. doi:10.2135/cropsci2016.10.0885

Doebley, J. (2004).The genetics of maize evolution. Annual review of genitcs. 38:37-59. doi: 10.1146/annurev.genet.38.072902.092425

Drummond, A. & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 7(1):214. doi: 10.1186/1471-2148-7-214

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32(5): 1792-1797. doi: 10.1093/nar/gkh340

Ekblom, R. & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary Applications. 7(9): 1026-1042. doi: 10.1111/eva.12178

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S. & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE. 6(5): e19379. doi: 10.1371/journal.pone.0019379

Gao, J., Zhang, Y., Zhang, C., Qi, F., Li, X., Mu, S. & Peng, Z. (2014). Characterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis. PLoS ONE. 9(6): e98910. doi: 10.1371/journal.pone.0098910

Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q. & Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE. 9(2): e90346. doi: 10.1371/journal.pone.0090346

Gore, M. A., Fang, D. D., Poland, J. A., Zhang, J., Percy, R. G., Cantrell, R. G., Thyssen, G. & Lipka, A. E. (2014). Linkage Map Construction and Quantitative Trait Locus Analysis of Agronomic and Fiber Quality Traits in Cotton. The Plant Genome. 7(1): 0. doi: 10.3835/plantgenome2013.07.0023

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden. J., Couger, MB., Eccles, D., Li B., Lieber, M., MacManes, M. D., Ott, M., Orvis J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R., Friedman, N. & Regev A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols. 8(8): 1494-1512. doi: 10.1038/nprot.2013.084

Hajjar, R. & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 156(1–2): 1-13. doi: 10.1007/s10681-007-9363-0

Han, X.-J., Wang, Y.-D., Chen, Y.-C., Lin, L.-Y., & Wu, Q.-K. (2013). Transcriptome Sequencing and Expression Analysis of Terpenoid Biosynthesis Genes in Litsea cubeba. PLoS ONE. 8(10): e76890. doi: 10.1371/journal.pone.0076890

He, J., Zhao, X., Laroche, A., Lu, Z.-X., Liu, H. & Li, Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science. 30(5): 484. doi: 10.3389/fpls.2014.00484

He, Z., Zhai, W., Wen, H., Tang, T., Wang, Y., Lu, X., Greenberg, A. J., Hudson, R. R., Wu, CI. & Shi, S. (2011). Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes. PLoS Genetics. 7(6): e1002100. doi: 10.1371/journal.pgen.1002100

Heffner, E. L., Lorenz, A. J., Jannink, J. L., & Sorrells, M. E. (2010). Plant breeding with Genomic selection: Gain per unit time and cost. Crop Science. 50(5): 1681-1690. doi: 10.2135/cropsci2009.11.0662

Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J. M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: what can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the United States of America. 96(11): 5937-5943. doi: 10.1073/PNAS.96.11.5937

Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q., Li W, Guo, Y., Deng. L., Zhu, C., Fan, D., Lu, Y., Weng, Q., Liu, K., Zhou, T., Jing, Y., Si, L., Dong, G., Huang, T., Lu, T., Feng, Q., Qian, Q., Li, J. & Han, B. (2011). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics. 44(1): 32-39. doi: 10.1038/ng.1018

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17(8): 754-755. doi: https:// 10.1093/bioinformatics/17.8.754

Hufford, M. B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J.-M., Cartwright, R. A., Elshire, R. J., Glaubitz J. C., Guill, K. E., Kaeppler, S. M., Lai, J., Morrell, P. L., Shannon, L. M., Song, C., Springer, N. M., Swanson-Wagner, R. A., Tiffin, P., Wang, J., Zhang, G., Doebley, J., McMullen, M. D., Ware, D., Buckler, E.S., Yang, S. & Jeffrey Ross-Ibarra (2012). Comparative population genomics of maize domestication and improvement. Nature Genetics. 44(7): 808-811. doi: 10.1038/ng.2309

Jackson, S. A., Iwata, A., Lee, S.-H., Schmutz, J., & Shoemaker, R. (2011). Sequencing crop genomes: approaches and applications. New Phytologist. 191(4): 915-925. doi: 10.1111/j.1469-8137.2011.03804.x

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002a). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 30(14): 3059-3066.

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002b). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 30(14): 3059-3066.

Koenig, D., Jimenez-Gomez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L. R., Kumar, R., Covington, M. F., Devisetty, U.K., Tat, A.V., Tohge, T., Bolger, A., Schneeberger, K., Ossowski, S., Lanz, C., Xiong, G., Taylor-Teeples, M., Brady, S. M., Pauly, M., Weigel, D., Usadel, B., Fernie, A. R., Peng, J., Sinha, N.R. & Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences. 110(28): E2655-E2662. doi: 10.1073/pnas.1309606110

Kubatko, L. S., Carstens, B. C., & Knowles, L. L. (2009). STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics. 25(7): 971-973. doi: https://doi.org/10.1093/bioinformatics/btp079

Kudapa, H., Ramalingam, A., Nayakoti, S., Chen, X., Zhuang, W.-J., Liang, X., Kahl, G., Edwards, D. & Varshney, R. K. (2013). Functional genomics to study stress responses in crop legumes: progress and prospects. Functional Plant Biology. 40(12):1221. doi: https://10.1071/FP13191

Larget, B. R., Kotha, S. K., Dewey, C. N. & Ané, C. (2010). BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Phylogenetics. 26(22): 2910-2911.

Liu, L. (2008). BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics. 24(21): 2542-2543. doi: 10.1093/bioinformatics/btn484

Lomsadze, A., Ter-hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. (2005). Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research. 33(20): 6494-6506. doi: 10.1093/nar/gki937

Love, M. I., Huber, W. & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15(12): 550. doi: 10.1186/s13059-014-0550-8

Majoros, W. ., Pertea, M., & Salzberg, S. (2004). TigrScan and GlimmerHMM : two open-source ab initio eukaryotic gene-finders. Bioinformatics. 20(16): 2878-2879.

Martinez-Castillo, J., Camacho-Perez, L., Villanueva-Viramontes, S., Andueza-Noh, R. H., & Chacon-Sanchez, M. I. (2014). Genetic structure within the Mesoamerican gene pool of wild Phaseolus lunatus (Fabaceae) from Mexico as revealed by microsatellite markers: Implications for conservation and the domestication of the species. American Journal of Botany. 101(5): 851-864. doi: 10.3732/ajb.1300412

Mooney, H. A. (2010). The ecosystem-service chain and the biological diversity crisis. Philosophical Transactions of the Royal Society B: Biological Sciences. 365(1537): 31–39. doi: 10.1098/rstb.2009.0223

Mutz, K.-O., Heilkenbrinker, A., Lönne, M., Walter, J.G. & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology. 24(1): 22-30. doi: 10.1016/j.copbio.2012.09.004

Nookaew, I., Papini, M., Pornputtapong, N., Scalcinati, G., Fagerberg, L., Uhlén, M. & Nielsen, J. (2012). A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Researc. 40(20): 10084-10097. doi: 10.1093/nar/gks804

Notredame, C., Higgins, D. G. & Heringa, J. (2000). T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton. Journal of Molecular Biology. 302(1): 205-217. doi: 10.1006/jmbi.2000.4042

Olsen, K. M. & Wendel, J. F. (2013). A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes. Annual Review of Plant Biology. 64(1): 47–70. doi: 10.1146/annurev-arplant-050312-120048

Parker, J. (2011). The 9 billion-people question. Recuperada de: http://www.economist.com/node/18200618

Patro, R., Mount, S. M. & Kingsford, C. (2014). Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology. 32(5): 462-464. doi: 10.1038/nbt.2862

Pearson, T. A. & Manolio, T. A. (2008). How to Interpret a Genome-wide Association Study. JAMA. 2299(11):1335-1344. doi: 10.1001/jama.299.11.1335

Poland, J. A. & Rife, T. W. (2012). Genotyping-by-Sequencing for Plant Breeding and Genetics. The Plant Genome. 58(5): 425-431. doi: 10.3835/plantgenome2012.05.0005

Posada, D. (2008). jModelTest : Phylogenetic Model Averaging. Molecular Biology and Evolution. 25(7): 1253-1256. doi: 10.1093/molbev/msn083

Ramos-Madrigal, J., Smith, B.D., Moreno-Mayar, J.V., Gopalakrishnan, S, Ross-Ibarra. J., Gilbert, M.T.P. & Wales N. (2016). Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication. Current Biology. 26(23):3195-3201. doi: 10.1016/j.cub.2016.09.036

Ranc, N., Muños, S., Xu, J., Le Paslier, M.-C., Chauveau, A., Bounon, R., Rolland, S., Bouchet, J. P., Brunel, D. & Causse, M. (2012). Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3: Genes, Genomes, Genetics. 2(8): 853-864. doi: 10.1534/g3.112.002667

Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R. & Chivian, E. (2001). Climate change and extreme weather events - Implications for food production, plant diseases, and pests. Global change & human health, nasa publications. 2(2): 90-104.

Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M,A., Chovatia, M., Gepts, P., Goodstein, D, M., Gonzales, M., Hellsten, U., Hyten, D, L., Jia, G., Kelly, J. D., Kudrna, D., Lee, R., Richard, M, M., Miklas, P. N., Osorno, J, M., Rodrigues, J., Thareau, V., Urrea, C. A., Wang, M., Yu, Y., Zhang, M., Wing, R. A., Cregan, P. B., Rokhsar, D. S. & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics. 46(7): 707–713. doi: 10.1038/ng.3008

Schurch, N. J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., Owen-Hughes, T., Blaxter, M. & Barton, G. J. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA Society. 22(6): 839–851. doi: 10.1261/rna.053959.115

Simpson, J. T. & Pop, M. (2015). The Theory and Practice of Genome Sequence Assembly. Annual Review of Genomics and Human Genetics. 16(1): 153–172. doi: 10.1146/annurev-genom-090314-050032

Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nature Reviews Genetics. 15(2): 121-132. doi: 10.1038/nrg3642

Smýkal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., Berger, J., Greene, S. L., Nelson, M. N,. Besharat, N. Vymyslický, T., Toker, C., Saxena, R. K., Roorkiwal, M., Pandey, M. K., Hu, J., Li, Y. H., Wang, L. X., Guo, Y., Qiu, L. J., Redden R.J. & Varshney, R. K. (2015). Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Critical Reviews in Plant Sciences. 34(1–3): 43-104. doi: https://doi.org/10.1080/07352689.2014.897904

Soto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., Léon, J., Bernal, A. J., Ballvora, A. & López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics. 16(1): 190. doi: 10.1186/s12864-015-1397-4

Spindel, J., Wright, M., Chen, C., Cobb, J., Gage, J., Harrington, S., Lorieux, M., Ahmadi, N. & McCouch, S. (2013). Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoretical and Applied Genetics. 126(11): 2699–2716. doi: 10.1007/s00122-013-2166-x

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22(21): 2688–2690. doi: 10.1093/bioinformatics/btl446

Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. (2004). AUGUSTUS : a web server for gene finding in eukaryotes. Nucleic Acids Research. 32(2): W309–W312. doi: https://doi.org/10.1093/nar/gkh379

Stormo, G. D. (2009). An introduction to sequence similarity (“homology”) searching. Current protocols in bioinformatics, 27(1): 3.1.1–3.1.7 doi: https://doi.org/10.1002/0471250953.bi0301s27

Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany. 99(2): 349-364. doi: https://doi.org/10.3732/ajb.1100335

Swamy, B. M., Vikram, P., Dixit, S., Ahmed, H., & Kumar, A. (2011). Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics. 12(1): 319. doi: https://doi.org/10.1186/1471-2164-12-319

Swofford, D. L. (2003). Phylogenetic analysis using parsimony. Recuperada de https://paup.phylosolutions.com/

Tang, H., Bomhoff, M. D., Briones, E., Zhang, L., Schnable, J. C., & Lyons, E. (2015). SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand. Genome Biology and Evolution. 7(12): 3286–3298. doi: https://doi.org/10.1093/gbe/evv219

Tester, M., & Langridge, P. (2010). Breeding Technologies to Increase Crop Production in a Changing World. Science. 327(5967): 818–822. doi: https://doi.org/10.1126/science.1183700

The Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature. 475(7355): 189-195. doi: https://doi.org/10.1038/nature10158

Torkamaneh, D., Laroche, J., & Belzile, F. (2016). Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies. PLOS ONE. 11(8): e0161333. doi: https://doi.org/10.1371/journal.pone.0161333

Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 25(9): 1105-1111. doi: https://doi.org/10.1093/bioinformatics/btp120

Valliyodan, B., & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology. 9(2): 189-195. doi: https://doi.org/10.1016/j.pbi.2006.01.019

Varshney, R.K., Nayak, S.N., May, G.D. & Jackson, S.A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnology. 27(9):522-530. doi: 10.1016/j.tibtech.2009.05.006

Van de Mortel, J. E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P. D., Van Themaat, E. V. L., Koornneef, M. & Aarts, M. G. M. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology. 142(3): 1127-1147. doi: https://doi.org/10.1104/pp.106.082073

Venditti, C., Meade, A. & Pagel, M. (2008). Phylogenetic mixture models can reduce node-density artifacts. Systematic Biology. 57(2): 286–293. doi: https://doi.org/10.1080/10635150802044045

Wang, M., Jiang, N., Jia, T., Leach, L., Cockram, J., Comadran, J., Shaw, .P, Waugh, R. & Luo, Z. (2012). Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics. 124(2): 233-246. doi: https://doi.org/10.1007/s00122-011-1697-2

Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J. H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Wang, J., Wang, X., Freeling, M., Pires, J. C., Paterson, A.H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A.G., Park, B.S., Weisshaar, B., Liu, B., Li, B., Liu, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G. J., Bonnema, G., Tang, H., Wang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Wang, H., Jin, H., Parkin, I. A., Batley, J., Kim, J. S., Just, J., Li, J., Xu, J., Deng, J., Kim, J. A., Li, J., Yu, J., Meng, J., Wang, J., Min, J., Poulain, J., Wang, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M. G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P. J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Zhang, S., Huang, S., Sato, S., Sun, S., Kwon, S. J., Choi, S. R., Lee, T. H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Y., Wang, Z., Li, Z., Wang, Z., Xiong, Z. & Zhang Z. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics. 43(10): 1035-1039. doi: http://dx.doi.org/10.1038/ng.919

Wang, Z., Gerstein, M. & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics. 10(1): 57–63. https://doi.org/10.1038/nrg2484

Ward, J. A., Bhangoo, J., Fernández-Fernández, F., Moore, P., Swanson, J., Viola, R., Velasco, R., Bassil, N., Weber, C. A. & Sargent, D. J. (2013). Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics. 14(1): 1-14. doi: https://doi.org/10.1186/1471-2164-14-2

Whankaew, S., Poopear, S., Kanjanawattanawong, S., Tangphatsornruang, S., Boonseng, O., Lightfoot, D. A., & Triwitayakorn, K. (2011). A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics, 12(1):266. doi: https://doi.org/10.1186/1471-2164-12-266

Wicke, S., & Schneeweiss, G. M. (2015). Next-generation organellar genomics: Potentials and pitfalls of high-throughput technologies for molecular evolutionary studies and plant systematics. In: E. Hörandl & M. S. Appelhans (Eds.), Next-Generation Sequencing in Plant Systematics. pp.1 - 42. Königstein, Germany : Koeltz Scientific Books. 298p.

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., Zhou, X., Lam, T. W., Li, Y., Xu, X., Wong, G. K. & Wang, J. (2014). SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 30(12): 1660–1666. doi: https://doi.org/10.1093/bioinformatics/btu077

Xu, J., Li, Y., Ma, X., Ding, J., Wang, K., Wang, S., Tian, Y., Zhang, H. & Zhu, X. G. (2013). Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research. Plant Molecular Biology. 83(1–2): 77–87. doi: https://doi.org/10.1007/s11103-013-0025-4

Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., Dong, Y., Gutenkunst, R. N., Fang, L., Huang, L., Li, J., He, W., Zhang, G., Zheng, X., Zhang, F., Li, Y., Yu, C., Kristiansen, K., Zhang, X., Wang, J., Wright, M., McCouch, S., Nielsen, R., Wang, J. & Wang, W. (2011). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology. 30(1): 105–111. doi: https://doi.org/10.1038/nbt.2050

Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics. 13(4): 119–125. doi: https://doi.org/10.5808/GI.2015.13.4.119

Zhou, X., Lindsay, H., & Robinson, M. D. (2014). Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Research. 42(11): e91–e91. doi: https://doi.org/10.1093/nar/gku310

Zhu, H., Choi, H.-K., Cook, D. R. & Shoemaker, R. C. (2005). Bridging model and crop legumes through comparative genomics. Plant Physiology. 137(4): 1189-1196.

Published

2018-12-19

How to Cite

Botero O., K., & Arias, T. (2018). The omics sciences used for crop improvement programs. Revista De Ciencias Agrícolas, 35(2), 64–78. https://doi.org/10.22267/rcia.183502.92