contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 38 No. 1 (2021): Revista de Ciencias Agrícolas - First semester, January - June 2021

Assessing the soil color by traditional method and a smartphone: a comparison

DOI
https://doi.org/10.22267/rcia.213801.146
Submitted
October 7, 2020
Published
2021-05-08

Abstract

Based on the hypothesis that there is a high agreement between pedologists and a smartphone application in the assessment of soil color; the objective was to compare the perceptions of pedologists and an application in obtaining the color of an Argissolo [Lixisol] (A, E and B horizons).  Ten aggregates of each horizon were collected. In a single day, under the same lighting conditions, three pedologists described the color components (hue, value, and chroma) of each aggregate (dry and moist soil) using the Munsell soil color chart. Each one of the ten aggregates, from each horizon, was photographed (dry and moist soil sequence) using the camera of a Motorola Moto G4 Plus smartphone. The distance of the camera to the aggregates was 25 ± 5 cm. Also, each aggregate was placed on a white sheet of A4 size paper (background). The application used was Soil Analysis Pro. The percentage of agreement between pedologists and application was obtained concerning hue, value, and chroma. The data were subjected to analysis of variance, in a completely randomized design, with ten replicates. Action Stat® software was used for statistical analysis. It was concluded that the agreement between pedologists and the smartphone application was medium for hue and chroma and low for value. For the dry soil condition, there is a high agreement between pedologists and the smartphone application, especially in the perception of hue and chroma. Thus, the smartphone application has the potential to be used in routine descriptions of soil color.

References

  1. Broken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt
  2. FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.
  3. Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009
  4. Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024
  5. Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.
  6. Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028
  7. Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measBroken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt
  8. FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.
  9. Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009
  10. Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024
  11. Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.
  12. Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028
  13. Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measurements with Munsell charts using a modified attribute agreement analysis. Catena, 171, 44-53. doi: https://doi.org/10.1016/j.catena.2018.06.027
  14. Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.
  15. Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002
  16. Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308
  17. Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056
  18. Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.
  19. Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015
  20. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014
  21. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027
  22. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018
  23. Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039
  24. Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará.
  25. Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.
  26. Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002
  27. Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308
  28. Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056
  29. Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.
  30. Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015
  31. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014
  32. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027
  33. Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018
  34. Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039
  35. Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará. https://cutt.ly/8vV6dOB

Downloads

Download data is not yet available.