Assessing the soil color by traditional method and a smartphone: a comparison

Keywords: Pedometrics, Soil analysis pro, Munsell soil color chart, Proximal sensing, Android, Digital camera

Abstract

Based on the hypothesis that there is a high agreement between pedologists and a smartphone application in the assessment of soil color; the objective was to compare the perceptions of pedologists and an application in obtaining the color of an Argissolo [Lixisol] (A, E and B horizons).  Ten aggregates of each horizon were collected. In a single day, under the same lighting conditions, three pedologists described the color components (hue, value, and chroma) of each aggregate (dry and moist soil) using the Munsell soil color chart. Each one of the ten aggregates, from each horizon, was photographed (dry and moist soil sequence) using the camera of a Motorola Moto G4 Plus smartphone. The distance of the camera to the aggregates was 25 ± 5 cm. Also, each aggregate was placed on a white sheet of A4 size paper (background). The application used was Soil Analysis Pro. The percentage of agreement between pedologists and application was obtained concerning hue, value, and chroma. The data were subjected to analysis of variance, in a completely randomized design, with ten replicates. Action Stat® software was used for statistical analysis. It was concluded that the agreement between pedologists and the smartphone application was medium for hue and chroma and low for value. For the dry soil condition, there is a high agreement between pedologists and the smartphone application, especially in the perception of hue and chroma. Thus, the smartphone application has the potential to be used in routine descriptions of soil color.

Downloads

Download data is not yet available.
Visits to the article summary page: 62

References

Broken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt

FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.

Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009

Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024

Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.

Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028

Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measBroken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt

FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.

Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009

Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024

Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.

Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028

Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measurements with Munsell charts using a modified attribute agreement analysis. Catena, 171, 44-53. doi: https://doi.org/10.1016/j.catena.2018.06.027

Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.

Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002

Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308

Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056

Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.

Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018

Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039

Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará.

Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.

Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002

Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308

Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056

Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.

Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027

Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018

Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039

Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará. https://cutt.ly/8vV6dOB

Published
2021-05-08
How to Cite
Raulino, G., Oliveira, L., do Nascimento, Ícaro, da Silva, C., Rocha Lobato, M., Alencar, T., Toma, R., da Silva, F., & Anunciato Mota, J. (2021). Assessing the soil color by traditional method and a smartphone: a comparison. Revista De Ciencias Agrícolas, 38(1). Retrieved from https://revistas.udenar.edu.co/index.php/rfacia/article/view/5810