Assessing the soil color by traditional method and a smartphone: a comparison
DOI:
https://doi.org/10.22267/rcia.213801.146Palabras clave:
Pedometrics, Soil analysis pro, Munsell soil color chart, Proximal sensing, Android, Digital cameraResumen
Based on the hypothesis that there is a high agreement between pedologists and a smartphone application in the assessment of soil color; the objective was to compare the perceptions of pedologists and an application in obtaining the color of an Argissolo [Lixisol] (A, E and B horizons). Ten aggregates of each horizon were collected. In a single day, under the same lighting conditions, three pedologists described the color components (hue, value, and chroma) of each aggregate (dry and moist soil) using the Munsell soil color chart. Each one of the ten aggregates, from each horizon, was photographed (dry and moist soil sequence) using the camera of a Motorola Moto G4 Plus smartphone. The distance of the camera to the aggregates was 25 ± 5 cm. Also, each aggregate was placed on a white sheet of A4 size paper (background). The application used was Soil Analysis Pro. The percentage of agreement between pedologists and application was obtained concerning hue, value, and chroma. The data were subjected to analysis of variance, in a completely randomized design, with ten replicates. Action Stat® software was used for statistical analysis. It was concluded that the agreement between pedologists and the smartphone application was medium for hue and chroma and low for value. For the dry soil condition, there is a high agreement between pedologists and the smartphone application, especially in the perception of hue and chroma. Thus, the smartphone application has the potential to be used in routine descriptions of soil color.
Descargas
Métricas
Citas
Broken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt
FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.
Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009
Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024
Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.
Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028
Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measBroken Oak studios. (2017). Soil Analysis Pro. Recovered from https://cutt.ly/xvV6eEt
FAO. (2014). World reference base for soil resources. Rome: Food and Agriculture Organization (FAO). 203 p.
Fan, Z.; Herrick, J.E.; Saltzman, R.; Matteis, C.; Yudina, A.; Nocella, N.; Crawford, E.; Parker, R. Van Zee, J. (2017). Measurement of soil color: a comparison between smartphone camera and the Munsell color charts. Soil Science Society of America Journal, 81, 1139-1146. doi: 10.2136/sssaj2017.01.0009
Han, P.; Dong, D.; Zhao, X.; Jiao, L.; Lang, Y. (2016). A smartphone-based soil color sensor: for soil type classification. Computers and Electronics in Agriculture, 123, 232-241. doi: https://doi.org/10.1016/j.compag.2016.02.024
Jahn, R.; Blume, H. P.; Asio, V. B., Spaargaren; O; Schad, P. (2006). Guidelines for soil description. 8º ed. Rome: Food and Agriculture Organization (FAO). 97 p.
Kirillova, N.P.; Grauer-gray, J.; Harteminkb A.E.; Sileovaa, T.M.; Artemyevac, Z.S.; Burova, E. K. (2018). New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture, 155, 378-385. doi: https://doi.org/10.1016/j.compag.2018.10.028
Marqués-Mateu, Á.; Moreno-Ramón, H.; Balasch, S.; Ibáñez-Asensio, S. (2018). Quantifying the uncertainty of soil colour measurements with Munsell charts using a modified attribute agreement analysis. Catena, 171, 44-53. doi: https://doi.org/10.1016/j.catena.2018.06.027
Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.
Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002
Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308
Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056
Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.
Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018
Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039
Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará.
Munsell color company (2009). Munsell Soil Color Charts. X-rite: Grand Rapids. 36 p.
Pegalajar, M.C.; Ruiz, L.G.B.; Sánchez-Marañón, M.; Mansilla, L. (2019). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems. doi: https://doi.org/10.1016/j.fss.2019.11.002
Pongnumkul, S.; Chaovalit, P.; Surasvadi, N. (2015). Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research. Journal of Sensors, 18. doi: https://doi.org/10.1155/2015/195308
Santos, J.F.C.; Silva, H.R.F.; Pinto, F.A.C.; Assis, I.R. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n12p1051-1056
Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R., Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema brasileiro de classificação de solos. 5º ed. Brasília: Embrapa. 590 p.
Skorka, O.; Dileepan J. (2011). Toward a digital camera to rival the human eye. Journal of Electronic Imaging, 20(3). doi: https://doi.org/10.1117/1.3611015
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2016). Evaluation of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 121, pp. 141-148. doi: https://doi.org/10.1016/j.compag.2015.11.014
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J. (2020). Using an inexpensive color sensor for rapid assessment of organic carbon. Geoderma, 286, 98-103.doi: https://doi.org/10.1016/j.geoderma.2016.10.027
Stiglitz, R.; Mikhailova, E.; Post, C.; Schlautman, M.; Sharp, J.; Pargas, R.; Glover, B., Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. Geoderma, 296, 108-114. doi: https://doi.org/10.1016/j.geoderma.2017.02.018
Simon, T.; Zhnag, Y.; Hartemink, A.E.; Huang, J.; Water, C.; Yost, J.L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, v.361. doi: https://doi.org/10.1016/j.geoderma. 2019.114039
Vieira, J. M. (2013). Contribuição de compostos de baixa cristalinidade e ciclos de umedecimento e secagem na gênese do caráter coeso em solos do Ceará. https://cutt.ly/8vV6dOB
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista de Ciencias Agrícolas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.