contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 39 No. 1 (2022): Revista de Ciencias Agrícolas - First semester, January - June 2022

Effects of static magnetic fields on onion (Allium cepa L.) seed germination and early seedling growth

DOI
https://doi.org/10.22267/rcia.223901.169
Submitted
March 22, 2021
Published
2021-12-16

Abstract

In vegetables of economic importance such as onion, one of the main limitations in their production is that their seeds have a relatively short storage life, so their viability decreases rapidly. Research has been carried out on onions to improve seed germination and to extend its use for sowing. The magnetic field is considered a simple, inexpensive, and non-invasive physical method to stimulate the germination process, compared to traditional chemical methods. In this sense the objective of this research were to evaluate the effects of static magnetic fields on Yellow Granex PRR hybrid onion (Allium cepa L.) seed germination, and early growth in the laboratory conditions. Seeds were exposed to 10 and 21mT, (mT=militesla), static magnetic fields induced by magnets for 0, 5, 3, 6, 12 and 24h; each treatment had four repetitions. The results showed that the low intensity stationary magnetic fields (10 and 21mT) did not cause significant differences in germination, dry weight, or fresh weight, but for the seedling length. It is necessary to increase the intensity of the magnetic fields and the exposure time to achieve important physiological changes that positively affect the germination and growth of onion seeds, and thus contribute to the improvement of their yield and productivity. The use of physical methods such as magnetism can stimulate different physiological processes in plants and thus contribute to the improvement of characteristics of agronomic interest.

References

  1. Acuña, R.F.; Naguelquin, F.; García, F.; Torres, J. (2019). Aplicación de campos magnéticos (CM) y su relación con la recuperación de la viabilidad y vigor en semillas envejecidas de Lactuca sativa L. Agro Sur. 47(1): 9-21. doi: 10.4206/agrosur.2019.v47n1-04
  2. Abdul-Baki, A.; Anderson. J.D. (1973). Vigor determination in soybean by multiple criteria. Crop Science. 13:31-34. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  3. Anand, A.; S. Najarían, S.; Verma, A.P.; Joshi, D.K, Pathak, P.C.; Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry Biophysics. 49: 63-70.
  4. Baghel, L.; Kataria, S.; Guruprasad, K. (2017). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica. 55: 1-13. doi: https://doi.org/10.1007/s11099-017-0722-3
  5. Balakhnina, T.; Bulak, P.; Nosalewicz, M.; Pietruszewski, S., Włodarczyk, T. (2015). The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiologiae Plantarum. 37: 59-69. doi: doi.org/10.1007/s11738-015-1802-2
  6. Bhardwaj, J.; Anand, A.; Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry. 57:67-73. doi.org/10.1016/j.plaphy.2012.05.008
  7. Bose, B.; Kumar, M.; Sighal, R.; Mondal, S. (2018). Impact of seed priming on the modulation of physical-chemical and molecular processes during germination, growth, and development of crops. pp. 33-40. In: Rakshit, A. and A.B. Singh (eds.). Advances in seed priming. Springer Nature, Singapore. doi: doi.org/10.1007/978-981-13-0032-5
  8. Cakmak, T.; Dumlupinar, R.; Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 13: 120-129. https://doi.org/10.1002/bem.20537
  9. Ćwintal, M.; Dziwulska-Hunek, A. (2013). Effect of electromagnetic stimulation of alfalfa seeds. International Agrophysics. 27:391-401. doi.org/10.2478/intag-2013-0009
  10. De Micco, V. ; Paradiso,R. ; Aronne, G. ; De Pascale, S. ; Quarto, M. ; Arena, C. (2014). Leaf anatomy and photochemical behavior of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionizing radiation. The Scientific World Journal. 1:1-14. doi: doi.org/10.1155/2014/428141
  11. Efthimiadou, A.; Katsenios, N., Karkanis, A.; Papastylianou, P.; Triantafyllidis, V.; Travlos, I.; Dimitrios, B. (2014). Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal. 1: 1-6. doi: doi.org/10.1155/2014/369745
  12. El-Kassaby, Y.; Moss, I., Kolotelo, D.; Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. Forest Science. 54(2): 220-227. doi: https://doi.org/10.1093/forestscience/54.2.220
  13. El Sagan, M.A.M.; El Baset, A.B.D. (2015). Impact of magnetic on metal uptake, quality and productivity in onion crop. Journal of Agriculture and Veterinary Science. 8(9):43-50. doi: 10.9790/2380-08924350
  14. Hozayn, M.; Amal, A.; Rahman, A. (2015). Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research. 10(8):859-867. doi: https://doi.org/10.5897/AJAR2014.9383
  15. Hozayn, M.; El-Monem, A.B.D.; Elwia, A.M.; Abdallah, T.A. (2014). Future of magnetic agriculture in arid and semi-arid regions (case study). Scientific Papers Series A, Agronomy. 57:197-204.
  16. Karimi, S.; Eshgi-Saeed, S.; Hasan-Nezhadian, S. (2017). Inducing salt tolerance in sweet corn by magnetic priming. Acta Agriculturae Slovenica. 109(1): 89-102. doi: http://dx.doi.org/10.14720/aas.2017.109.1.09
  17. Khan. F.; Sumati, B.; Maqbool, R.; Murtuza, F.U.; Khan, I. (2017). Seed deterioration and priming – an overview. Skuast Journal of Research. 19(1):12-21.
  18. Kireva, R.; Mihov, M. (2018). Impact of magnetic treatment of tomato and onion seeds on their productivity. Mechanization in Agriculture & Conservation of the Resources. 64(2): 68-71.
  19. Krawiec, M.; Dziwulska, A.; Sujak, S. (2015). Laser irradiation effects on scorzonera (Scorzonera hispanica L.) seed germination and seedling emergence. Acta Scientiarum Polonoru Hortorum Cultus.14: 145-158.
  20. Kubisz, L.; Holubowicz, R.; Gauza, M.; Li, H.; Hojan-Jezierska, D.; Jaroszyk, F. (2012). Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds. Acta Physica Polonica. 1(121): 49-53. doi: 10.12693/APhysPolA.121.A-49
  21. Lorigooini, Z.; Hosseinzadeh, B.; Zareiforoush, H. (2017). Optimization of the efficiency of electromagnetic waves dryer power on chemical composition and yield of Satureja bachtiarica essential oil using response surface methodology. Journal of Essential Oil Bearing Plants. 20(1): 1-11. doi: https://doi.org/10.1080/0972060X.2016.1264277
  22. Macovei, A.; Garg, B.; Raikwar, S.; Balestrazzi, A.; Carbonera, D.; Buttafava, A.; Jiménez, J.; Singh, S.; Tuteja, N. (2014). Synergistic exposure of rice seeds to different doses of g-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. Biomed Research International. 2014(ID 676934): 15. doi: https://doi.org/10.1155/2014/676934
  23. Maffei, M.E. (2014). Magnetic field effect on plant, growth, devel¬opment, and evolution. Frontiers in Plant Science, Plant Physiology. 5: 445-462. doi: https://doi.org/10.3389/fpls.2014.00445
  24. Martínez, E.; Florez, M.; Carbonell, M.V. (2017). Stimulatory effect of the magnetic treatment on the germination of cereal seeds. International Journal of Environment, Agriculture and Biotechnology. 2(1): 2456-1878. doi: http://dx.doi.org/10.22161/ijeab/2.1.47
  25. Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S. (2012). Effect of magnetic field on germination and seedling growth of sunflower. International Agrophysics. 26(3): 271-278. doi: doi.org/10.2478/v10247-012-0039-1
  26. Mousavizadeh, S.M.; Sedaghathoor, S.; Rahimi, A.; Mohammadi, H. (2013). Germination parameters and peroxidase activity of lettuce seed under stationary magnetic field. International Journal of Biosciences. 3(4): 199-207. doi: http://dx.doi.org/10.12692/ijb/3.4.199-207
  27. Ouhibi, C.; Attia, H.; Rebah, F.; Msilini, N.; Chebbi, M.; Aarrouf, J.; Urban, L.; Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants, growth, antioxidant activity and phenolic compounds. Plant Physiology Biochemistry. 83: 126-133. doi: https://doi.org/10.1016/j.plaphy.2014.07.019
  28. Prazeres, C.; Medeiros, M. (2017). Hydration curve and physiological quality of maize seeds subjected to water deficit. Semina: Ciencias Agrárias. 38(3): 1179-1186. doi: http://dx.doi.org/10.5433/1679-0359.2017v38n3p1179
  29. Radhakrishnan, R. (2018). Seed pretreatment with magnetic field alters the storage proteins and lipid profile in harvested soybean seeds. Physiology and Molecular Biology of Plants. 24(2): 343-347. doi: https://doi.org/10.1007/s12298-018-0505-8
  30. Samani, M.A.; Pourakbar, L.; Azimi, N. (2013). Magnetic field effects on seed germination and activities of some enzymes in cumin. Life Science Journal. 10(1): 323-328.
  31. Shashurin, M.N.; Prokopiev, A.A.; Shein, G.V.; Filippova, G.V.; Zhuravskaya, A.N. (2014). Physiological responses of Plantago media to electromagnetic field of power-line fre¬quency (50 Hz). Russian Journal of Plant Physiology. 61: 484-488. doi: https://doi.org/10.1134/S1021443714040177
  32. Sousa, S.; Paparella, S.; Dondi, D.; Bentivoglio, A.; Carbonera, D.; Balestrazzi, A. (2016). Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers en Ciencias Vegetales. 7: 646. doi: https://doi.org/10.3389/fpls.2016.00646
  33. Tkalec, M.; Malaric, K.; Pavlica, M.; Pevalek-Kozlina, B.; Vidakovic-Cifrek, Z. (2009). Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutation Research. 672(2): 76-81. doi: https://doi.org/10.1016/j.mrgentox.2008.09.022
  34. Zhao, Y.; Hub, M.; Gaob, Z.; Chenb, X.; Huanga, D. (2018). Biological mechanisms of a novel hydro-electro hybrid priming recovers potential vigor of onion seeds. Environmental and Experimental Botany. 150:260-271. doi: https://doi.org/10.1016/j.envexpbot.2018.04.002
  35. Zlotopolski, V. (2017). Magnetic treatment reduces water usage in irrigation whithout negatively impacting yield, photosynthesis and nutrient uptake in lettuce. International Journal of Applied Agricultural Sciences. 3(5): 117-122. doi: doi.org/10.11648/j.ijaas.20170305.13

Downloads

Download data is not yet available.