Effects of static magnetic fields on onion (Allium cepa L.) seed germination and early seedling growth

Authors

  • Ana Cruz Morillo-Coronado Universidad Pedagógica y Tecnológica de Colombia http://orcid.org/0000-0003-3125-0697
  • Herlyn Giovanni Martínez-Anzola Universidad Pedagógica y Tecnológica de Colombia
  • Julián David Velandia-Díaz Universidad Pedagógica y Tecnológica de Colombia
  • Yacenia Morillo-Coronado Corporación Colombiana de Investigación, AGROSAVIA

DOI:

https://doi.org/10.22267/rcia.223901.169

Keywords:

Development, exposure time, intensity, liliaceae, vigor

Abstract

In vegetables of economic importance such as onion, one of the main limitations in their production is that their seeds have a relatively short storage life, so their viability decreases rapidly. Research has been carried out on onions to improve seed germination and to extend its use for sowing. The magnetic field is considered a simple, inexpensive, and non-invasive physical method to stimulate the germination process, compared to traditional chemical methods. In this sense the objective of this research were to evaluate the effects of static magnetic fields on Yellow Granex PRR hybrid onion (Allium cepa L.) seed germination, and early growth in the laboratory conditions. Seeds were exposed to 10 and 21mT, (mT=militesla), static magnetic fields induced by magnets for 0, 5, 3, 6, 12 and 24h; each treatment had four repetitions. The results showed that the low intensity stationary magnetic fields (10 and 21mT) did not cause significant differences in germination, dry weight, or fresh weight, but for the seedling length. It is necessary to increase the intensity of the magnetic fields and the exposure time to achieve important physiological changes that positively affect the germination and growth of onion seeds, and thus contribute to the improvement of their yield and productivity. The use of physical methods such as magnetism can stimulate different physiological processes in plants and thus contribute to the improvement of characteristics of agronomic interest.

Downloads

Download data is not yet available.

References

Acuña, R.F.; Naguelquin, F.; García, F.; Torres, J. (2019). Aplicación de campos magnéticos (CM) y su relación con la recuperación de la viabilidad y vigor en semillas envejecidas de Lactuca sativa L. Agro Sur. 47(1): 9-21. doi: 10.4206/agrosur.2019.v47n1-04

Abdul-Baki, A.; Anderson. J.D. (1973). Vigor determination in soybean by multiple criteria. Crop Science. 13:31-34. https://doi.org/10.2135/cropsci1973.0011183X001300060013x

Anand, A.; S. Najarían, S.; Verma, A.P.; Joshi, D.K, Pathak, P.C.; Bhardwaj, J. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry Biophysics. 49: 63-70.

Baghel, L.; Kataria, S.; Guruprasad, K. (2017). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica. 55: 1-13. doi: https://doi.org/10.1007/s11099-017-0722-3

Balakhnina, T.; Bulak, P.; Nosalewicz, M.; Pietruszewski, S., Włodarczyk, T. (2015). The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiologiae Plantarum. 37: 59-69. doi: doi.org/10.1007/s11738-015-1802-2

Bhardwaj, J.; Anand, A.; Nagarajan, S. (2012). Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry. 57:67-73. doi.org/10.1016/j.plaphy.2012.05.008

Bose, B.; Kumar, M.; Sighal, R.; Mondal, S. (2018). Impact of seed priming on the modulation of physical-chemical and molecular processes during germination, growth, and development of crops. pp. 33-40. In: Rakshit, A. and A.B. Singh (eds.). Advances in seed priming. Springer Nature, Singapore. doi: doi.org/10.1007/978-981-13-0032-5

Cakmak, T.; Dumlupinar, R.; Erdal, S. (2010). Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 13: 120-129. https://doi.org/10.1002/bem.20537

Ćwintal, M.; Dziwulska-Hunek, A. (2013). Effect of electromagnetic stimulation of alfalfa seeds. International Agrophysics. 27:391-401. doi.org/10.2478/intag-2013-0009

De Micco, V. ; Paradiso,R. ; Aronne, G. ; De Pascale, S. ; Quarto, M. ; Arena, C. (2014). Leaf anatomy and photochemical behavior of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionizing radiation. The Scientific World Journal. 1:1-14. doi: doi.org/10.1155/2014/428141

Efthimiadou, A.; Katsenios, N., Karkanis, A.; Papastylianou, P.; Triantafyllidis, V.; Travlos, I.; Dimitrios, B. (2014). Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal. 1: 1-6. doi: doi.org/10.1155/2014/369745

El-Kassaby, Y.; Moss, I., Kolotelo, D.; Stoehr, M. (2008). Seed germination: Mathematical representation and parameters extraction. Forest Science. 54(2): 220-227. doi: https://doi.org/10.1093/forestscience/54.2.220

El Sagan, M.A.M.; El Baset, A.B.D. (2015). Impact of magnetic on metal uptake, quality and productivity in onion crop. Journal of Agriculture and Veterinary Science. 8(9):43-50. doi: 10.9790/2380-08924350

Hozayn, M.; Amal, A.; Rahman, A. (2015). Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research. 10(8):859-867. doi: https://doi.org/10.5897/AJAR2014.9383

Hozayn, M.; El-Monem, A.B.D.; Elwia, A.M.; Abdallah, T.A. (2014). Future of magnetic agriculture in arid and semi-arid regions (case study). Scientific Papers Series A, Agronomy. 57:197-204.

Karimi, S.; Eshgi-Saeed, S.; Hasan-Nezhadian, S. (2017). Inducing salt tolerance in sweet corn by magnetic priming. Acta Agriculturae Slovenica. 109(1): 89-102. doi: http://dx.doi.org/10.14720/aas.2017.109.1.09

Khan. F.; Sumati, B.; Maqbool, R.; Murtuza, F.U.; Khan, I. (2017). Seed deterioration and priming – an overview. Skuast Journal of Research. 19(1):12-21.

Kireva, R.; Mihov, M. (2018). Impact of magnetic treatment of tomato and onion seeds on their productivity. Mechanization in Agriculture & Conservation of the Resources. 64(2): 68-71.

Krawiec, M.; Dziwulska, A.; Sujak, S. (2015). Laser irradiation effects on scorzonera (Scorzonera hispanica L.) seed germination and seedling emergence. Acta Scientiarum Polonoru Hortorum Cultus.14: 145-158.

Kubisz, L.; Holubowicz, R.; Gauza, M.; Li, H.; Hojan-Jezierska, D.; Jaroszyk, F. (2012). Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds. Acta Physica Polonica. 1(121): 49-53. doi: 10.12693/APhysPolA.121.A-49

Lorigooini, Z.; Hosseinzadeh, B.; Zareiforoush, H. (2017). Optimization of the efficiency of electromagnetic waves dryer power on chemical composition and yield of Satureja bachtiarica essential oil using response surface methodology. Journal of Essential Oil Bearing Plants. 20(1): 1-11. doi: https://doi.org/10.1080/0972060X.2016.1264277

Macovei, A.; Garg, B.; Raikwar, S.; Balestrazzi, A.; Carbonera, D.; Buttafava, A.; Jiménez, J.; Singh, S.; Tuteja, N. (2014). Synergistic exposure of rice seeds to different doses of g-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. Biomed Research International. 2014(ID 676934): 15. doi: https://doi.org/10.1155/2014/676934

Maffei, M.E. (2014). Magnetic field effect on plant, growth, devel¬opment, and evolution. Frontiers in Plant Science, Plant Physiology. 5: 445-462. doi: https://doi.org/10.3389/fpls.2014.00445

Martínez, E.; Florez, M.; Carbonell, M.V. (2017). Stimulatory effect of the magnetic treatment on the germination of cereal seeds. International Journal of Environment, Agriculture and Biotechnology. 2(1): 2456-1878. doi: http://dx.doi.org/10.22161/ijeab/2.1.47

Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S. (2012). Effect of magnetic field on germination and seedling growth of sunflower. International Agrophysics. 26(3): 271-278. doi: doi.org/10.2478/v10247-012-0039-1

Mousavizadeh, S.M.; Sedaghathoor, S.; Rahimi, A.; Mohammadi, H. (2013). Germination parameters and peroxidase activity of lettuce seed under stationary magnetic field. International Journal of Biosciences. 3(4): 199-207. doi: http://dx.doi.org/10.12692/ijb/3.4.199-207

Ouhibi, C.; Attia, H.; Rebah, F.; Msilini, N.; Chebbi, M.; Aarrouf, J.; Urban, L.; Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants, growth, antioxidant activity and phenolic compounds. Plant Physiology Biochemistry. 83: 126-133. doi: https://doi.org/10.1016/j.plaphy.2014.07.019

Prazeres, C.; Medeiros, M. (2017). Hydration curve and physiological quality of maize seeds subjected to water deficit. Semina: Ciencias Agrárias. 38(3): 1179-1186. doi: http://dx.doi.org/10.5433/1679-0359.2017v38n3p1179

Radhakrishnan, R. (2018). Seed pretreatment with magnetic field alters the storage proteins and lipid profile in harvested soybean seeds. Physiology and Molecular Biology of Plants. 24(2): 343-347. doi: https://doi.org/10.1007/s12298-018-0505-8

Samani, M.A.; Pourakbar, L.; Azimi, N. (2013). Magnetic field effects on seed germination and activities of some enzymes in cumin. Life Science Journal. 10(1): 323-328.

Shashurin, M.N.; Prokopiev, A.A.; Shein, G.V.; Filippova, G.V.; Zhuravskaya, A.N. (2014). Physiological responses of Plantago media to electromagnetic field of power-line fre¬quency (50 Hz). Russian Journal of Plant Physiology. 61: 484-488. doi: https://doi.org/10.1134/S1021443714040177

Sousa, S.; Paparella, S.; Dondi, D.; Bentivoglio, A.; Carbonera, D.; Balestrazzi, A. (2016). Physical methods for seed invigoration: Advantages and challenges in seed technology. Frontiers en Ciencias Vegetales. 7: 646. doi: https://doi.org/10.3389/fpls.2016.00646

Tkalec, M.; Malaric, K.; Pavlica, M.; Pevalek-Kozlina, B.; Vidakovic-Cifrek, Z. (2009). Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutation Research. 672(2): 76-81. doi: https://doi.org/10.1016/j.mrgentox.2008.09.022

Zhao, Y.; Hub, M.; Gaob, Z.; Chenb, X.; Huanga, D. (2018). Biological mechanisms of a novel hydro-electro hybrid priming recovers potential vigor of onion seeds. Environmental and Experimental Botany. 150:260-271. doi: https://doi.org/10.1016/j.envexpbot.2018.04.002

Zlotopolski, V. (2017). Magnetic treatment reduces water usage in irrigation whithout negatively impacting yield, photosynthesis and nutrient uptake in lettuce. International Journal of Applied Agricultural Sciences. 3(5): 117-122. doi: doi.org/10.11648/j.ijaas.20170305.13

Downloads

Published

2021-12-16

How to Cite

Morillo-Coronado, A. C., Martínez-Anzola, H. G., Velandia-Díaz, J. D., & Morillo-Coronado, Y. (2021). Effects of static magnetic fields on onion (Allium cepa L.) seed germination and early seedling growth. Revista De Ciencias Agrícolas, 39(1), 30–41. https://doi.org/10.22267/rcia.223901.169