contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 39 No. E (2022): Agrosustentability and crop improvements in the tropics special edition, June - December 2022

Trichoderma asperellum (Samuels, Lieckf & Nirenberg) as a promoter of vegetative growth in soybeans

DOI
https://doi.org/10.22267/rcia.202239E.199
Submitted
June 9, 2021
Published
2022-12-20

Abstract

With the intensification of the problems encountered in agriculture, the use of microorganisms shows promise. Fungi of the Trichoderma genus are found naturally in the soil and have been; they are used as an active ingredient in biofungicides and have activity as promoters of plant growth. This work aimed to evaluate the efficiency of the commercial product TrichoPlus, containing Trichoderma asperellum (Samuels, Lieckf & Nirenberg) as a promoter of soybean plant growth. Four independent experiments were carried out in different periods between 2019 and 2020. The experiments were conducted in a greenhouse, and biomass and nutrient contents were examined. In the first experiment, among the different rates of TrichoPlus tested (3, 4, 5, and 6 g per kg of seeds), the best dose for most of the characteristics evaluated was 5 g per kg of seed. Hence, the inoculation of TrichoPlus at 5 g per kg of seed in the other experiments showed positive results in the accumulation of biomass, nitrogen, and phosphorus content. Based on the study's results, the product TrichoPlus, composed of T. asperellum, can be used as an efficient inoculant for promoting soybean plant growth.

References

  1. Alekseeva, K.L.; Smetanina, L.G.; Kornev, A.V. (2019). Biological protection of tomato from Fusarium wilt. AIP Conference Proceedings. 2063(1): 030001. https://doi.org/10.1063/1.5087309
  2. Ministério da Agricultura, Pecuária e Abastecimento. (2019). Mercado de biodefensivos cresce mais de 70% no Brasil em um ano. www.agricultura.gov.br/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil
  3. Borsari, A.C.P.; Vieira, L.C. (2022). Mercado e perspectivas dos bioinsumos no Brasil. In: Meyer, M.C.; Bueno, A.F.; Mazaro, S.M.; Silva, J.C. (Eds.). Bioinsumos na cultura da soja. p. 39-52. Brasília, Embrapa.
  4. Brotman, Y.; Gupta K.J.; Viterbo, A. (2010). Trichoderma. Current Biology. 20(9):390-391. https://doi.org/10.1016/j.cub.2010.02.042
  5. Carvalho, D.D.C.; Mello, S.C.M.; Lobo Junior, M.; Silva, M.C. (2011). Control of Fusarium oxysporum f. sp. phaseoli in vitro and on seeds and growth promotion of common bean in early stages by Trichoderma harzianum. Tropical Plant Pathology. 36(1):28-34. http://dx.doi.org/10.1590/S1982-56762011000100004
  6. Chagas, L.F.B.; Castro, H.G.; Colonia, B.S.O.; Carvalho Filho, M.R.; Miller, L.O.; Chagas Junior, A.F. (2016a). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany. 38(4):1-11. http://dx.doi.org/10.1007/s40415-015-0247-6
  7. Chagas, L.F.B.; Castro, H.G.; Colonia, B.S.O.; Carvalho Filho, M.R.; Miller, L.O.; Chagas Junior, A.F. (2016b). Efficiency of the inoculation of Trichoderma asperellum UFT-201 in cowpea production components under growth conditions in field. Revista de Ciências Agrárias. 39(3):413-421. https://dx.doi.org/10.19084/RCA15112
  8. Chagas, L.F.B.; Chagas Junior, A.F.; Castro, H.G. (2017a). Phosphate solubilization capacity and indole acetic acid production by Trichoderma strains for biomass increase on basil and mint plants. Brazilian Journal of Agriculture. 92(2):176-185. https://doi.org/10.37856/bja.v92i2.3221
  9. Chagas, L.F.B.; Chagas Junior, A.F.; Soares, L.P.; Fidelis, R.R. (2017b). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical. 4(3):97-102. https://doi.org/10.32404/rean.v4i3.1529
  10. Chagas, L.F.B.; Martins, A.L.L.; Carvalho Filho, M.R.; Miller, L.O.; Oliveira, J.C.; Chagas Junior, A.F. (2017c). Bacillus subtilis e Trichoderma spp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Agri-Environmental Sciences. 3(2):10-18. https://revista.unitins.br/index.php/agri-environmental-sciences/article/view/430
  11. Chagas Junior, A.F.C.; Chagas, L.F.B.; Santos, G.R.; Martins, A.L.L.; Carvalho F.M.R.; Oliveira-Miller, L. (2018). Action of Trichoderma spp. in the control of Fusarium sp., Rhizoctonia solani and Sclerotium rolfsii. Agri-Environmental Sciences, 4(2):9-15. https://doi.org/10.36725/agries.v4i2.420
  12. Chagas Junior, A.F.; Chagas, L.F.B.; Miller, L.O.; Oliveira, J.C. (2019a). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research. 14(5):263-271. http://dx.doi.org/10.5897/AJAR2018.13556
  13. Chagas Junior, A.F.; Chagas, L.F.B.; Colonia, B.S.O.; Miller, L.O.; Oliveira, J.C. (2019b). Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. African Journal of Agricultural Research. 14(33):1772-1777. http://dx.doi.org/10.5897/AJAR2019.13985
  14. Contreras-Cornejo, H.A.; López-Bucio, J.S.; Méndez-Bravo, A.; Macías-Rodriguéz, L.; Ramos-Vega, M.; Guevara-García, A.A.; Lópes-Bucio, J. (2015). Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Molecular Plant Microbe Interactions. 28(6):701–10. http://dx.doi.org/10.1094/MPMI-01-15-0005-R
  15. Contreras-Cornejo, H.A.; Macías-Rodríquez, L.; Del-Val, E.; Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology. 92:1-17. https://doi.org/10.1093/femsec/fiw036
  16. Das, T.; Mahapatra, S.; Das, S. (2017). In vitro compatibility study between the Rhizobium and native Trichoderma isolates from lentil rhizospheric soil. International Journal of Current Microbiology and Applied Sciences. 6(8):1757-1769. https://doi.org/10.20546/ijcmas.2017.608.208
  17. Egamberdieva, D.; Wirth, S.J.; Shurigin, V.V.; Hashen, A.; Allah, E.F.A. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology. 8:1-13. https://doi.org/10.3389/fmicb.2017.01887
  18. Embrapa - Empresa Brasileira de Pesquisa Agropecuária. (2011). Manual de métodos de análise de solo. 2a ed. Rio de Janeiro, EMBRAPA – CNPS: Centro Nacional de Pesquisa de Solos. 225p.
  19. Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2(1):43-56. https://doi.org/10.1038/nrmicro797
  20. Jesus, E.P.; Souza, C.H.E.; Pomella, A.W.V.; Costa, R.L.; Seixas, L.; Silva, R.B. (2011). Avaliação do potencial de Trichoderma asperellum como condicionador de substrato para a produção de mudas de café. Cerrado Agrociências. 2:7–19.
  21. Karaoglu, S.A.; Bozdeveci, A.; Pehlivan, N. (2018). Characterization of local Trichoderma sp. as potential bio-control agents, screening of in vitro antagonistic activities and fungicide tolerance. Hacettepe Journal of Biology and Chemistry. 46(2):247–261. https://doi.org/10.15671/HJBC.2018.233
  22. Li, R.X.; Cai, F.; Pang, G.; Shen, Q.R.; Li, R.; Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One. 10(6):e0130081. https://doi.org/10.1371/journal.pone.0130081
  23. Machado, D.F.M.; Parzianello, R.F.; Silva, A.C.F.; Antoniolli, Z.I. (2012). Trichoderma no Brazil: O Fungo e Bioagente. Revista de Ciências Agrárias. 35(1):274-288. https://doi.org/10.19084/rca.16182
  24. Malavolta, E.; Vitti, G.C.; Oliveira, S.A. (1997). Princípios, métodos e técnicas de avaliação do estado nutricional. In: Malavolta E, Vitti GC, Oliveira as (Eds). Avaliação do estado nutricional de plantas: princípios e aplicações. 2ª ed. p.115-230. Piracicaba: Potafos.
  25. Mendoza-Mendoza, A.; Zaid, R.; Lawry, R.; Hermosa, R.; Monte, E.; Horwitz, B.A.; Mukherjee, P.K. (2018). Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews. 32(2):62-85. https://doi.org/10.1016/j.fbr.2017.12.001
  26. Meyer, M.C.; Mazaro, S.M.; Silva, J.C. (2020). Trichoderma: uso na agricultura. Brasília: Embrapa. 538p.
  27. Meyer, M.C.; Mazaro, S.M.; Silva, J.C. (2022). Bioinsumos na cultura da soja. Brasília: Embrapa. 550p.
  28. Monte, B.H.; Bettiol, E.; Hermosa, R. (2019). Trichoderma e seus mecanismos de ação para o controle de doenças de plantas. In: Meyer, M.C.; Mazaro, S.M.; Silva, J.C. (Eds.). Trichoderma: Uso na Agricultura. p. 181-199. Brasília: Embrapa.
  29. Oliveira, R.S.; Chagas, L.F.B.; Martins, A.L.L.; Souza, M.C.; Luz, L.L.; Gomes, F. L.; Chagas Junior, A. F. (2022). Trichoderma in the phytopathogenic biocontrol. Bulgarian Journal of Agricultural Science. 28(4):717–724.
  30. Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. (2007). Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science. 11:1633-1644. https://doi.org/10.5194/HESS-11-1633-2007
  31. Poole, P.P.; Ramachandran, V.; Terpolilli, J. (2018). Rhizobia: from saprophytes to endosymbionts. Nature Reviews Microbiology. 18(5):291-303. https://doi.org/10.1038/nrmicro.2017.171
  32. Rubio, M.B.; Hermosa, R.; Vicente, R.; Gómez-Acosta, F.A.; Morcuende, R.; Monte, E.; Bettiol, W. (2017). The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Frontiers in Plant Science. 8(294):1-14. https://doi.org/10.3389/fpls.2017.00294
  33. Samuels, G.J.; Lieckfeldt, E.; Nirenberg, H.I. (1999). Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. Sydowia. 51(1):71-88.
  34. Samuels, G.J.; Ismaiel, A.; Bon, M.C.; De Respinis, S.; Petrini, O. (2010). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia. 102(4):944-966. https://doi.org/10.3852/09-243
  35. Santos, H.A.; Mello, S.C.M.; Peixoto, J.R. (2010). Associação de isolados de Trichoderma spp. e ácido indol-3-butírico (AIB) na promoção de enraizamento de estacas e crescimento de maracujazeiro. Bioscience Journal. 26(6): 966-972.
  36. Saravanakumar, K.; Yu, C.; Dou, K.; Wang, M.; Li, Y.; Chen, J. (2016). Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. Cucumerinum. Biological Control. 94:37-46. https://doi.org/10.1016/j.biocontrol.2015.12.001
  37. Silva, V.N.; Guzzo, S.D.; Lucon, C.M.M.; Harakava, R. (2011). Promoção de crescimento e indução de resistência à antracnose por Trichoderma spp. em pepineiro. Pesquisa Agropecuária Brasileira. 46(12):1609-1618. https://doi.org/10.1590/S0100-204X2011001200005
  38. Silva, J.C.; Torres, D.B.; Lustosa, D.C.; Filippi, M.C.C.; Silva, G.B. (2012). Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Amazonian Journal of Agricultural and Environmental Sciences. 55(4):243-250. http://dx.doi.org/10.4322/rca.2012.078
  39. Woo, S.L.; Pepe, O. (2018). Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science. 9(1801):1-6. https://doi.org/10.3389/fpls.2018.01801
  40. Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. (2014). Trichoderma-based products and their widespread Use in agriculture. The Open Mycology Journal. 8:71-126.
  41. Zeilinger, S.; Gruber, S.; Bansal, R. (2016). Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews. 30(2): 74-90. https://doi.org/10.1016/j.fbr.2016.05.001

Downloads

Download data is not yet available.