Botanical formulations for the ecological management of Myzus persicae (Sulzer) and Aphis gossypii (Clover) (Hemiptera: Aphididae) and their side effects on parasitoids

Authors

  • Jorge Eduardo Castresana INTA
  • Laura Elena Puhl

DOI:

https://doi.org/10.22267/rcia.213801.144

Keywords:

aphids, extracts, essential oils, parasitoids

Abstract

The peach aphid Myzus persicae (Sulzer) and cotton aphid Aphis gossypii (Clover) (Hemiptera: Aphididae) are considered to be key pests affecting greenhouse pepper crops in Argentina as a result of their frequent occurrence and the seriousness of the damage caused by their feeding behavior and the transmission of virus. The goal of this research was to determine the efficiency of botanical products to control aphids and their side effects on parasitoids in this crop. Thus, three biorational pest control formulations derived from essential oils (EO) and plant extracts (Es) were tested, namely (i) neem EO, cinnamon EO, clove EO, oregano EO and American marigold EO (formulation 1); (ii) garlic EO and cinnamon EO (formulation 2); (iii) garlic E and rue E (formulation 3); and a soy lecithin adjuvant (lecithin), and finally, a control (water spray method). For this research, a completely randomized design was replicated 3 times. These treatments were applied directly to the foliage by means of a backpack sprayer on a weekly basis until the end of this trial. Subsequently, the total number of healthy aphids and parasitized aphids (mummies) on every leaf was recorded in the field and the laboratory through repeated measures Analysis of Variance (ANOVA) and LSD Fisher method. The results showed that formulation 1 and formulation 3 recorded a lower number of aphids and mummies compared to the other treatments. This evidence would demonstrate that these formulations repel aphids and parasitoids without the lethal effects caused by the use of broad spectrum insecticides.

Downloads

Download data is not yet available.

References

Adekunle, O.; Acharya, R.; Singh, B. (2007). Toxicity of pure compounds isolated from Tagetes minuta oil to Meloidogyne incognita. Australasian Plant Disease. 2:101 - 104.doi.org/10.1016/j.ijpharm.2014.12.069

Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; Mousadik, A. E.; Hartmann, D.; Jilale, A.; Renaud, F.N.R. (2015). Essential oils: From extraction to encapsulation. International Journal Pharmaceutics. 483: 220-243. doi: 10.1016/j.ijpharm.2014.12.069

Awais, M.M.; Akhtar, M.; Iqbal, Z.; Muhammad, F. (2014). Saccharum officinarum derived mid molecular mass glycoproteins as native BRMs in chickens. Pakistan Journal of Life and Society Sciences, 11: 200-207.

Barati, R.; Golmohammadi, G.; Ghajarie, H.; Zarabi, M.; Mansouri, R. (2014). Efficiency of some herbal pesticides on reproductive parameters of silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Archives of Phytopathology and Plant Protection. 47: 212-221. doi: 10.1080/03235408.2013.807035

Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51:41-51. doi: 10.1016/j.ibmb.2014.05.003

Blackman, R.K.; Eastop, V.F. (2017). Taxonomic issues. In: van Emden H, Harrington R (eds.). Aphids as crop pests, 2nd edn. CABI Publishing, Wallingford, UK, pp 1-36.

Chaudhary, S; Kanwar, R.K.; Sehgal, A; Cahill, D.M; Barrow, C.J; Sehgal, R.; Kanwar, J. R. (2017). Progress on Azadirachta indica based Biopesticides in replacing synthetic Toxic Pesticides. Frontiers in Plant Science, 8: 610. doi: 10.3389/fpls.2017.00610

Cheng, S.; Liu, J.; Han C.; Hsui, Y.; Chen W.; Chang, S. (2009). Insecticidal activities of leaf essential oils from Cinnamomum osmophleum against three mosquito species. Bioresource Technology, 100 (1): 457–464. doi: 10.1016/j.biortech.2008.02.030

Costa, L.G. (2018). Organophosphorus compounds at 80: some old and new issues. Toxicological Sciences, 162: 24-35. doi.org/10.1093/toxsci/kfx266

Daedouri, T.; Gautier, H.; Ben Issa, R.; Costagliola, G.; Gomez, L. (2019). Repellence of Myzus persicae (Sulzer): evidence of two modes of action of volátiles from selected living aromatic plants. Pest Management Science, 75: 1571-1584. doi: 10.1002/ps.5271

Faleiro, M.L; Miguel, M.G.; Ladeiro, F.; Venâncio, F.; Tavares, R.; Brito, J.C.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. (2003). Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters and Applied Microbiology, 36: 35-40. doi: 10.1046/j.1472-765X.2003.01259.x

Goyal, S.; Lambert C.; Cluzet, S.; Merillon, J.M.; Ramawat, K.G. (2012). Secundary metabolites and plant defence. Progress in Biological Control, 12: 109-138. doi: 10.1007/978-94-007-1933-0_5

Haddouchi, F.; Chaouche, T.M.; Zaouli, Y.; Ksouri, R.; Attou, A.; Benmansour, A. (2013). Chemical composition and antimicrobial activity of essential oils from four Ruta species growing in Algeria. Food Chemistry, 141:253-258. doi: 10.1016/j.foodchem.2013.03.007

Hrbek, V.; Rektorisova, M.; Chmelarova, H.; Ovesna, J. (2018). Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry, Journal of Food Composition and Analysis, 67: 19-28. doi: 10.1016/j.jfca.2017.12.020

Hilje, L, 2001. Avances hacia el manejo sostenible del complejo Bemisia tabaci-geminivirus en tomate, en Costa Rica, Manejo integrado de Plagas (Costa Rica), 61:70-81.

Ho, S.H.; Koh, L.; Ma, Y.; Huang, Y.; Sim, K.I. (1996). The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biology and Technology, 9: 41-48. doi: 10.1016/0925-5214(96)00018-X

Isman, M.B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19:603-608. doi: 10.1016/S0261-2194(00)00079-X

Isman, M.B. (2006). Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51:45-66. doi: 10.1146/annurev.ento.51.110104.151146

InfoStat, (2014). InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 200 pp.

Jarošvá, J.; Beoni, E.; Kundu, J.K. (2016). Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crops Research 198:200-214. doi: 10106/J.FCR.2016.08.030

Jordan, S. (1939). Water Dispersible Lecithin. U. S. Patent 2, 296, 933.

Jumbo, L.O.V.; Faroni, L.R.A.; Oliveira, E.E.; Pimentel, M.A.; Silva, G.N. (2014) Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units Industrial Crops and Products, 56: 27-34. doi: 10.1016/j.indcrop.2014.02.038

Molina, N. (2001). Uso de extractos botánicos en control de plagas y enfermedades. Revista Manejo Integrado (59): 76-77.

Mossa, A.H. (2016). Green Pesticides: Essential Oils as Biopesticides in Insect-pest Management. Journal of Environmental Science and Technology, 9:354-378. doi: 10.3923/jest.2016.354.378

Orthoefer, F. Cold Later Dispersible Lecithin Concentrates. U.S. Patent 4,200,551, 1980.

Pavela, R.; Benelli, G. (2016). Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Science, 12: 1000–1007. doi: 10.1111/j.1461-9555.2006.00273.x

Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. (2016). Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Industrial Crops and Products, 89:507-513. doi: 10.1016/j.indcrop.2016.06.008

Polack, L.; Mitidieri, M. 2005. Producción de tomate diferenciado. Protocolo preliminar de manejo integrado de plagas y enfermedades. EEA San Pedro, INTA. http://www.inta.gob.ar/sanpedro/info/doc/pdf/protocolo_manejo_de_plagas_tomate_2005.pdf

Prajapati, V.; Tripathi, A.K.; Aggarwal, K.K.; Khanuja, S.P.S. (2005). Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology, 96 (16): 1749-1757. doi: 10.1016/j.biortech.2005.01.007

Prowse, G.M.; Galloway T.S.; Foggo, A. (2006). Insecticidal activity of garlic juice in two dipteran pests. Agricultural and Forest Entomology, 8: 1-6. doi: 10.1111/j.1461-9555.2006.00273.x

Quisenbery, S.S.; Xinzhi, N. (2007). Feeding injury. In: van Emden H, Harrington R (eds.). Aphids as crop pests, CABI Publishing, Wallingford, UK, pp. 331-352.

Reddy, G.; Guerrero, A. (2004). Interactions of insect pheromones and plant semiochemicals. Trends Plant Science, 9: 253-261. doi: 10.1016/j.tplants.2004.03.009

Santos, S.A.P.; Santos, C.; Silva, S.; Pinto, G.; Torres, L.M.; Nogueria, A.J.A. (2013). Effect of sooty mold on fluorescence and gas Exchange properties of olive tree. Turkish Journal of Biology, 37 (5): 620-628. doi:10.3906/biy-1301-81. doi: 10.3906/biy-1301-81.

Szczepanik, M.; Walczak, M.; Zawitowska, B.; Michalska-Sionkowska, M.; Szumny, A.; Wawrze’nczyk, C.; Brzezinska, M.S. (2018). Chemical composition, antimicrobial activity and insecticidal activity against the lesser mealworm Alphitobius diaperinus (panzer) (Coleoptera: Tenebrionidae) of Origanum vulgare L. ssp. Hirtum (link) and Artemisia dracunlus L. essential oils. Journal of the Science of Food and Agriculture, 98: 767-774. doi: 10.1002/jsfa.8524

SENASICA - Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. (2014). Pulgón amarillo Melanaphis sacchari (Zehntner). Dirección General de Sanidad Vegetal. Centro Nacional de Referencia Fitosanitaria. México, D.F. Ficha técnica, N° 43, 15 p.

Tak, J.H.; Isman, M.B. (2017). Penetration-enhacement underlies synergy of plant: essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, 7:72432. doi: 10.1038/srep42432

Tavares, W.D.; Freitas, S.D.; Grazziotti, G.H.; Parente, L.M.L.; Lião, L.M.; Zanuncio, J. C. (2013). Ar-turmerone from Curcuma longa (Zingiberacear) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops Products, 46: 158-164. doi: 10.1016/j.indcrop.2013.01.023

Tian, B.L.; Liu, Q.Z.; Liu, Z.L.; Li, P.; Wang, J.W. (2015). Insecticidal potencial of clove essential oil and its constituents on Cacopsylla chinensis (Hemiptera: Psyllidae) in laboratory and field. Journal of Economic Entomology. 108; 957-961. doi: 10.1093/jee/tov075

Villaverde, J.J.; Sevilla, B.; Sandín, P.; López, C.; Alonso, J.L. (2014). Biopesticides in the framework of the European Pesticide Regulation (EC) N°. 1107/2009. Pest Management Science, 70: 2-5. doi: 10.1002/ps.3663

Xie, Y.J.; Huang, Q.Q.; Rao, Y.Q.; Hong, l.; Zhang, D.Y. (2019). Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, Musca domestica L. (Diptera: Muscidae). Environmental Science and Pollution Research, 26:23824-23831. doi: 10.1007/s11356-019-05671-4

Wanzala, W.; Ogoma, S.B. (2013). Chemical composition and mosquito repellency of essential oil of Tagetes minuta from the Southern slopes of Mount Elgon in Western Kenya. Journal of Essential Oil Bearing Plants, 16 (2): 216-232. doi: 10.1080/0972060X.2013.793975

Zhang, Z.L.; Yang, T.; Zhang, Y.K.; Wang, L.H.; Xie, Y.J. (2016). Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Industrial Crops and Products, 81:147-151. doi:10.1016/j.indcrop.2015.11.076

Downloads

Published

2021-05-08

How to Cite

Castresana, J. E., & Puhl, L. E. (2021). Botanical formulations for the ecological management of Myzus persicae (Sulzer) and Aphis gossypii (Clover) (Hemiptera: Aphididae) and their side effects on parasitoids. Revista De Ciencias Agrícolas, 38(1), 50–61. https://doi.org/10.22267/rcia.213801.144