Effect of salicylic acid and progesterone on physiological characteristics of Kentucky bluegrass under salinity stress

Authors

DOI:

https://doi.org/10.22267/rcia.213801.151

Keywords:

lawn, ascorbate peroxidase, reactive oxygen, carotenoid

Abstract

Salinity is one of the most important limiting factors in plant growth. It is also a predominant constraint that impairs grass growth and quality. Plant hormones play important roles in the capability of plants to adapt to environmental stresses. Hence, the impact of two plant growth regulators (PGRs) i.e. salicylic acid (SA) and progesterone (P4) was studied on biological characteristics of Poa pratensis in saline conditions in a greenhouse experimnt. The experimental treatments were composed of salinity at four levels (0, 2, 4, and 6 dS m-1) and six levels of PGRs (control, 1 mg L-1 P4,10 mg L-1 P4, 1 mM SA, 3 mM SA, and 1 mg L-1 P4 + 1 mM SA). The results showed that leaf firing percentage was increased with the excess in salinity, but the use of SA and P4 eased the effects of salinity stress and reduced leaf firing under salinity. 6 dS m-1 and 3 mM SA salinity caused to the maximum electrolyte leakage. The highest relative water content was observed in 4 dS m-1 salinity and 1 mM SA treatment. The highest glycine betaine was related to 6 dS m-1 NaCl and no hormone application. Salinity increased total protein and catalase, and the simultaneous use of P4 and SA exhibited the highest total protein and catalase content, whilst the control plants showed the lowest ones. The application of salinity stress reduced chlorophyll content, but SA and P4 increased it. The application of the two growth regulators improved carotenoid content under salinity stress. Overall, the results showed that the application of SA and P4 improved salinity tolerance and increased pigments and antioxidant enzyme activities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adavi, Z.; Mobli, M.; Razmjo, K.H. (2006). Effects of salinity level of irrigation water on African lawn cultivars (Cynodon dactylon) under soil salinity in Esfahan. Natural Resources and Agricultural Technology. 10: 179-190.

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology. 105:121-126. doi: 10.1016/s0076-6879(84)05016-3

Aftab, T.; Khan, M.M.A.; Idrees, M.; Naeem, M.; Singh, M.; Ram, M. (2010). Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acidapplication. Journal of Plant Interactions. 5: 273-281. doi:10.1080/17429141003647137

Agarwal, S.; Sairam, R. K.; Srivastava G. C.; Meena, R.C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum. 49: 541–550. doi: 10.1007/s10535-005-0048-z

Ahmadi, M.; Souri, M. K. (2020). Growth characteristics and fruit quality of chili pepper under higher electrical conductivity of nutrient solution induced by various salts. AGRIVITA, Journal of Agricultural Science. 42(1): 143-152. doi: 10.17503/agrivita.v42i1.2225

Ahmadi, M.; Souri, M. K. (2019). Nutrient uptake, proline content and antioxidant enzymes activity of pepper (Capsicum annuum L.) under higher electrical conductivity of nutrient solution created by nitrate or chloride salts of potassium and calcium. Acta Scientiarum Polonorum, Hortorum Cultus. 18(5): 113-122. doi: 10.24326/asphc.2019.5.11

Ahmadi, M.; Souri, M. K. (2018). Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiologia Plantarum. 40: 94-99. doi: 10.1007/s11738-018-2773-x

Alshammary, S. F.; Qian, Y. L.; Wallner, S. J. (2004). Growth response of four turfgrass species to salinity. Agricultural Water Management. 66(2): 97-111. doi: 10.1016/j.agwat.2003.11.002

Arghavani, M.; Savadkoohi, S.; Mortazavi, N. (2017). Salinity tolerance of Kentucky Bluegrass as affected by salicylic acid. Journal of Ornamental Plants. 7(4): 237-245.

Arnof, S. (1946). Photochemical reduction of chloroplast grana. Plant Physiology. 21(4):393–409. doi: 10.1104/pp.21.4.393

Ashraf, M.; Akram, N. A.; Arteca,R. N.; Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences. 29: 162-190. doi: 10.1080/07352689.2010.483580

Bates, L. S.; Waldren, R.P.; Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil. 39(1): 205-207. doi: 10.1007/bf00018060

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248- 254. doi: 10.1016/0003-2697(76)90527-3

Chaparzadeh, N.; Hosseinzad-Behboud, E. (2015). Evidence for enhancement of salinity induced oxidative damages by salicylic acid in radish (Raphanus sativus L.). Journal of Plant Physiology and Breeding, 5(1): 23-33.

DaCosta, M.; Huang, B. (2007). Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in responses to drought stress. Journal of the American Society for Horticultural Science. 132: 319-326. doi: 10.21273/jashs.132.3.319

Demiral, T.; Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany. 56: 72-79. doi: 10.1016/j.envexpbot.2005.01.005

Dixit, V.; Pandey, V.; Shyam, R. (2001). Differential antioxidative responses to heavy metal in roots and leaves of pea (Pisum sativum L. CV. Azad). Journal of Experimental Botany. 52:(358): 1101-1109. doi: 10.1093/jexbot/52.358.1101

El-Tayeb, M. A.; El-Enany, A. E.; Ahmed, N. L. (2006). Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation. 50: 191-199. doi: 10.1007/s10725-006-9118-2

Erdal, S.; Genisel, M.; Turk, H.; Gorcek, Z. (2012). Effects of progesterone application on antioxidant enzyme activities and K+/Na+ ratio in bean seeds exposed to salt stress. Toxicology and Industrial Health. 28. 942-6. 10.1177/0748233711430975

Erdal, S.; Dumlupinar, R. (2011). Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. Acta Physiologiae Plantarum. 33(3):1011-1017. doi: 10.1007/s11738-010-0634-3

Fu, J.; Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-seasion grasses to localized drought stress. Environmental and Experimental Botany. 45: 105-114. doi: 10.1016/S0098-8472(00)00084-8

Genisel, M.; Turk, H.; Erdal, S. (2013). Exogenous progesterone application protects chickpea seedlings against chilling-induced oxidative stress. Acta Physiologiae Plantarum. 35: 241–251. doi: 10.1007/s11738-012-1070-3

Ghai, N.; Setia, R. C.; Setia, N. (2002). Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL 1). Phytomorphology. 52: 83-87.

Grieve, C.; Grattan, S. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil. 70: 303-307. doi: 10.1007/bf02374789

Hayat, Q.; Hayat, S. Ifran, M.; Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany. 68: 14-25. doi: 10.1016/j.envexpbot.2009.08.005

Idrees, M.; Khan, M. M. A.; Aftab, T.; Naeem, M.; Hashmi, N. (2010). Salicylic acid induced physiological and biochemical changes in lemongrass varieties under water stress. Journal of Plant Interactions. 5: 293- 303. doi: 10.1080/17429145.2010.508566

Koch, M. J.; Huang, B. R.; Bonos, S. A. (2011). Salinity tolerance of Kentuckybluegrass cultivarsand selections using an overhead irrigated screening technique. Crop Science. 51: 2846-2857. doi: 10.2135/cropsci2011.03.0174

Ma, X. L.; Wang Y. J.; Xie S. L.;Wang C.; Wang W. 2007. Glycine betaine application ameliorates negative effects of drought stress in tobacco. Russian Journal of Plant Physiology. 54: 472–479. doi: 10.1134/S1021443707040061

Manna, A.; Mimouni, H.; Wasti, S.; Gharbi, E.; Aschi-Smiti, S.; Faurobert, M.; Ben Ahmad, H. (2013) Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics Journal. 6: 268-277.

Metwally, M. A.; Awad, A.; Abou-Leila, B.; Tayeb, T.; Habba, I. (2015). Studies on the effect of gamma, laser irradiation and progesterone treatments on gerbera leaves. European Biophysics Journal. 21: 3(6): 43-50. doi: 10.11648/j.ejb.20150306.11

Moghadamyar, M.; Kazemsouri, M.; Motalebi, E.; Reza Rouzban, M. (2019). Effects of foliar application of salicylic acid on growth characteristics of lolium grass under salt stress condition. Journal of Environmental Science and Technology. 20(4): 142-152.

Padash, A.; Ghanbari A.; Sirousmehr A. R.; Asgharipour M. R. (2018). Effect of salicylic acid on basil resistance against lead. Journal of Plant Research. 31(1): 118-129.

Parvaiz, A.; Satyawati, S. (2008). Salt stress and phytobiochemical responses of plants. Plant, Soil and Environment. 54: 89-99.

Pettigrew, W. T. (2004). Physiological consequences of moisture deficit stress in cotton. Crop Science. 44, 1265–1272. doi: 10.2135/cropsci2004.1265

Rojek, J.; Pawełko, L.; Kapusta, M.; Naczk, A.; Bohdanowicz, J. (2015). Exogenous steroid hormones stimulate full development of autonomous endosperm in Arabidopsis thaliana. Acta Societatis Botanicorum Poloniae. 84(2):287–301. doi: 10.5586/asbp.2015.022

Shalini, V.; Duey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science. 164: 1645-1655. doi: 10.1016/s0168-9452(03)00022-0

Slattery, R.; VanLoocke, A.; Bernacchi, C.; Zhu, X.; Ort D. (2017). Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Frontiers in Plant Science. 8: 549. doi: 10.3389/fpls.2017.00549

Simova-Stoilova, L.; Vaseva, I.; Grigorova, B.; Demirevska, K.; Feller, U. (2010). Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiology and Biochemistry. 48: 200-206. doi: 10.1016/j.plaphy.2009.11.003

Soliman, W. S.; Sugiyama, S.; Abbas, A. M. (2018). Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Horticulture, Environment, and Biotechnology. 59 (1): 29–36. doi: 10.1007/s13580-018-0004-4

Souri, M. K.; Hatamian, M. (2019). Aminochelates in plant nutrition; a review. Journal of Plant Nutrition. 42 (1): 67-78. doi: 10.1080/01904167.2018.1549671

Souri, M. K.; Neumann, G. (2018). Indications for passive rather than active release of natural nitrification inhibitors in Brachiaria humidicola root exudates. Journal of Plant Nutrition. 41(4); 477-486. doi: 10.1080/01904167.2017.1385809

Souri, M. K.; Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture. 6(1): 26. doi: 10.1186/s40538-019-0169-9

Taïbi, K.; Taïbi, F.; Abderrahim, L. A.; Ennajahb, A.; Belkhodja, M.; MiguelMulet, J. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. 105: 306–312. doi: 10.1016/j.sajb.2016.03.011

Tajmirriahi, R.; Etemadi, N. A.; Mortezanezhad, F.; Sadeghi, A. (2015). Evaluation of salinity tolerance of native exotic wheat grass species. Journal of Plant Physiology. 7: 93-104.

Waseem, M.; Athar, H. U. R.; Ashraf, M. (2006). Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pakistan Journal of Botany. 38: 4. 1127-1136.

Xue, R. L.; Wang, S. Q.; Xu, H. L.; Zhang, P. J., Li, H.; Zhao, H. J. (2017). Progesterone increases photochemical efficiency of photosystem II in wheat under heat stress by facilitating D1 protein phosphorylation. Photosynthetica. 55(4): 664- 670. doi: 10.1007/s11099-016-0681-0

Yang, Z.; Chang, Z.; Sun, L.; Yu, J.; Huang, B. (2014). Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS ONE. 9(12): 1- 25. doi: 10.1371/journal.pone.0116283

Yang, Z.; Yu, J.; Merewitz, E.; Huang, B. (2012). Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. Journal of the American Society for Horticultural Science, 137(2): 96- 106. doi: 10.21273/jashs.137.2.96

Zhang, X. (2016). Salicylic acid, auxin and tryptophan impact on salt tolerance of creeping bentgrass. Phoenix Convention Center North, Exhibit Hall CDE.

Downloads

Published

2021-06-05

How to Cite

Sabzmeydani, E., Sedaghathoor, S., & Hashemabadi, D. (2021). Effect of salicylic acid and progesterone on physiological characteristics of Kentucky bluegrass under salinity stress. Revista De Ciencias Agrícolas, 38(1), 111–124. https://doi.org/10.22267/rcia.213801.151