contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 1 (2025): Revista de Ciencias Agrícolas - Primer cuatrimestre, Enero - Abril 2025

Impact of chisel plowing on soil physical properties in rice (Oryza Sativa L.) cultivation

DOI
https://doi.org/10.22267/rcia.20254201.254
Submitted
December 21, 2023
Published
2025-04-28

Abstract

The continuous use of agricultural machinery in rice (Oryza Sativa L.) cultivation throughout its vegetative cycle increase in apparent density and resistance to penetration into the soil, which affects the development of the crop and its performance. Thus, seeking a more sustainable agriculture, it was proposed to evaluate the soil's physical properties and crop yield, modifying the conventional preparation with a harrow using a chisel on the USCO’s Farm in Palermo (Huila, Colombia). Four experimental treatments were implemented: three with different chisel passes and a control with conventional plowing, in which real density, bulk density, and porosity were evaluated before and after tillage, and after harvest. The statistical analysis was carried out through analysis of variance, and the techno-economic analysis was carried out based on the production and operation costs between the two types of tillage. The results showed that after tillage, the bulk density decreased by 13.5% in the control and 11.5% in T3. These effects increased porosity between 23.0 and 31.6% in the area with greater tillage. After the harvest, a resilient response of the soil was found, which recovered 9.5 and 12.4% of the apparent density in T3 and T4, respectively. The use of reduced tillage with chisel did not make a significant difference in production (Control: 7.8 t ha-1, T1 and T2: 8.2 t ha-1, and T3: 8.4 t ha-1), but it was more economical and less aggressive for the soil in structural terms.

References

  1. Abdallah, A. M.; Jat, H. S.; Choudhary, M.; Abdelaty, E. F.; Sharma, P. C.; Jat, M. L. (2021). Conservation agriculture effects on soil water holding capacity and water-saving varied with management practices and agroecological conditions: A review. Agronomy. 11(9): 1681. https://doi.org/10.3390/agronomy11091681
  2. Abich, S.; Gitau, A. N.; Nyaanga, D. M. (2022). Effect of soil compaction on physico-mechanical properties of silt loam soils of Njoro, Kenya. Agricultural Engineering International: CIGR Journal. 24(4): 20-29.
  3. Ajayi, A. E.; Faloye, O. T.; Reinsch, T.; Horn, R. (2021). Changes in soil structure and pore functions under long term/continuous grassland management. Agriculture, Ecosystems and Environment. 314: 107407. https://doi.org/10.1016/j.agee.2021.107407
  4. Alam, M. K; Bell, R. W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M. H.; Akter, N.; Akhter, S.; Islam, M. S.; Islam, S.; Naznin, S.; Anik, M. F. A.; Bhuyin- Apu, Md. M. -R; Saif, H. B., Alam, M. J.; Khatun, M. F. (2020). Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy. 10(6): 888. https://doi.org/10.3390/agronomy10060888
  5. Amézquita Collazos, E. (1999). Propiedades físicas de los suelos de los Llanos Orientales y sus requerimientos de labranza. Revista Palmas. 20(1): 73–86. http://hdl.handle.net/20.500.12324/15962
  6. Amin, M. G. M.; Akter, A.; Jahangir, M. M. R.; Ahmed, T. (2021). Leaching and runoff potential of nutrient and water losses in rice field as affected by alternate wetting and drying irrigation. Journal of Environmental Management. 297: 113402. https://doi.org/10.1016/j.jenvman.2021.113402
  7. Ayub, M. A.; Usman, M.; Faiz, T.; Umair, M.; ul Haq, M. A.; Rizwan, M.; Ali, S.; Zia ur Rehman, M. (2020). Restoration of degraded soil for sustainable agriculture BT. In: Swaroop-Menna, R. Soil Health Restoration and Management. pp.31–81. First edition. Singapore: Springer Singapore 380p. https://doi.org/10.1007/978-981-13-8570-4_2
  8. Azevedo, R. P.; da Silva, L. C. M. d.; Pereira, F. A. C.; Peche, P. M.; Pio, L. A. S.; Mancini, M.; Curi, N.; Montoani-Silva, B. (2023). Interactions between intrinsic soil properties and deep tillage in the sustainable management of perennial crops. Sustainability. 15(1): 760. https://doi.org/10.3390/su15010760
  9. Blanco, H.; Lal, R. (2023). Restoration and management of degraded soils. In: Blanco, H.; Lal, R. Soil Conservation and Management pp. 331–361. Second edition. Switzerland: Springer Cham. 380p. https://doi.org/10.1007/978-3-031-30341-8_14
  10. Bodner, G.; Mentler, A.; Keiblinger, K. (2021). Plant roots for sustainable soil structure management in cropping systems. In The Root Systems in Sustainable Agricultural Intensification. 45–90. https://doi.org/https://doi.org/10.1002/9781119525417.ch3
  11. Burrall, M.; DeJong, J. T.; Martinez, A.; Wilson, D. W. (2020). Vertical pullout tests of orchard trees for bio-inspired engineering of anchorage and foundation systems. Bioinspiration & Biomimetics. 16(1): 16009. https://doi.org/10.1088/1748-3190/abb414
  12. Carrasco-Castañeda, B. S. (2019). Representación espacial de las pérdidas de agua por infiltración, en el canal San Martín de la comisión de usuarios seminario, empleando sistema de información geográfica. https://repositorio.unp.edu.pe/items/395f4e53-3ea0-4e38-90dc-192ce86e34ff
  13. Carvalho-Junior. W.; da Silva-Chagas, C.; Muselli, A.; Koenow-Pinheiro, H. -S.; Rendeiro-Pereira, N.; Barge-Bhering, S. (2014). Método do hipercubo latino condicionado para a amostragem de solos na presença de covariáveis ambientais visando o mapeamento digital de solos. Revista Brasileira de Ciencia Do Solo. 38(2): 386–396. https://doi.org/10.1590/S0100-06832014000200003
  14. Cui, Z.; Wu, G.-L.; Huang, Z.; Liu, Y. (2019). Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. Journal of Hydrology. 578: 124023. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124023
  15. Das, A.; Layek, J.; Ramkrushna, G. I.; Rangappa, K.; Lal, R.; Ghosh, P. K.; Choudhury, B. U.; Mandal, S.; Ngangom, B., Dey, U.; Prakash, N. (2019). Effects of tillage and rice residue management practices on lentil root architecture, productivity and soil properties in India’s Lower Himalayas. Soil and Tillage Research. 194. 104313. https://doi.org/https://doi.org/10.1016/j.still.2019.104313
  16. Das, A.; Rangappa, K.; Basavaraj, S.; Dey, U.; Haloi, M.; Layek, J.; Ngachan, S. (2021). Conservation tillage and nutrient management practices in summer rice (Oryza sativa L.) favoured root growth and phenotypic plasticity of succeeding winter pea (Pisum sativumL.) under eastern Himalayas, India. Heliyon: 7(5): e07078. https://doi.org/10.1016/j.heliyon.2021.e07078
  17. Dzhabborov, N.; Dobrinov, A.; Sergeev, A. (2021). Vibration parameters and indicators of a dynamic tillage tool. IOP Conference Series: Earth and Environmental Science. 937(3): 032048. https://doi.org/10.1088/1755-1315/937/3/032048
  18. El-Beltagi, H. S.; Basit, A.; Mohamed, H. I.; Ali, I.; Ullah, S.; Kamel, E. A.; Ghazzawy, H. S. (2022). Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy: 12(8): 1881. https://doi.org/10.3390/agronomy12081881
  19. Ellies, A.; Ramirez, C.; Mac Donald, R.; Figueroa S. H. (1993). Modificaciones estacionales en la distribución del espacio poroso por tamaño en un suelo sometido a variado uso forestal. Bosque. 14(2): 31–35. https://doi.org/10.4206/bosque.1993.v14n2-05
  20. Finster, A. R. (2021). Tires, tracks, and tethering: idaho steep slope harvesting abstract. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/nv935b158?locale=en
  21. Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research. 225: 105462. https://doi.org/10.1016/j.still.2022.105462
  22. García, R., D. Y.; Cárdenas-H., J. F.; Silva-Parra, A. (2018). Evaluación de sistemas de labranza sobre propiedades físico-químicas y microbiológicas en un Inceptisol. Revista de Ciencias Agrícolas. 35(1): 16-25. https://doi.org/10.22267/rcia.183501.79
  23. Gómez-Calderón, N.; Villagra-Mendoza, K.; Solórzano-Quintana, M. (2018). La labranza mecanizada y su impacto en la conservación del suelo (revisión literaria). Revista Tecnología En Marcha. 31(1): 170. DOI:10.18845/tm.v31i1.3506
  24. González-Barrios, J. L.; González-Cervantes, G.; Sánchez-Cohen, I.; López-Santos, A.; Valenzuela-Núñez, L. -M. (2011). Caracterización de la porosidad edáfica como indicador de la calidad física del suelo. Terra Latinoamericana. 29(4): 369–377.
  25. Goulart, R. Z.; Reichert, J. M.; Rodrigues, M. F. (2020). Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies. Agricultural Systems. 177: 102715. https://doi.org/10.1016/j.agsy.2019.102715
  26. Gutierrez, P. H.; de la Vara, S. R. (2008) Análisis y diseño de experimentos. 2nd ed. México: Mc Graw Hill. 85p.
  27. Gutiérrez-Marroquín, J. M. (2018). Diagnóstico de la compactación de suelos arroceros del municipio de Campoalegre-Huila. https://repositorio.unal.edu.co/handle/unal/69299
  28. He, Z.; Jia, G.; Liu, Z.; Zhang, Z.; Yu, X.; Xiao, P. (2020). Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrological Processes. 34(25): 4904–4919. https://doi.org/10.1002/hyp.13892
  29. Hossne G., A. J. (2004). Evaluación terramecánica del crecimiento radical en un suelo ultisol de sabana del Estado Monagas, Venezuela. Revista Cientifica UDO Agricola. 4(1): 42–52.
  30. Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; El‐esawi, M. A. (2021). Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants. 10(10): 1–16. https://doi.org/10.3390/plants10102001
  31. Jaramillo, S.; Graterol, E.; Pulver, E. (2020). Sustainable Transformation of rainfed to irrigated agriculture through water harvesting and smart crop management practices. Frontiers in Sustainable Food Systems. 4: 437086. https://doi.org/10.3389/fsufs.2020.437086
  32. Kalita, J.; Ahmed, P.; Baruah, N. (2020). Puddling and its effect on soil physical properties and growth of rice and post rice crops: A review. Journal of Pharmacognosy and Phytochemistry. 9(4): 503–510.
  33. Karlen, D. L.; Veum, K. S.; Sudduth, K. A.; Obrycki, J. F.; Nunes, M. R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research. 195: 104365. https://doi.org/https://doi.org/10.1016/j.still.2019.104365
  34. Kaur, G.; Singh, G.; Motavalli, P. P.; Nelson, K. A.; Orlowski, J. M.; Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal. 112(3): 1475–1501. https://doi.org/10.1002/agj2.20093
  35. Kaya-Altop, E.; Şahin, M.; Jabran, K.; Phillippo, C. J.; Zandstra, B. H.; Mennan, H. (2019). Effect of different water management strategies on competitive ability of semi-dwarf rice cultivars with Echinochloa oryzoides. Crop Protection. 116: 33–42. https://doi.org/https://doi.org/10.1016/j.cropro.2018.10.009
  36. Kumar, P.; Mishra, A. K.; Chaudhari, S. K.; Singh, R.; Yadav, K.; Rai, P.; Sharma, D. K. (2022). Conservation agriculture influences crop yield, soil carbon content and nutrient availability in the rice–wheat system of north-west India. Soil Research. 60(6): 624–635. https://doi.org/10.1071/SR21121
  37. Lehmann, J.; Bossio, D. A.; Kögel-Knabner, I.; Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth and Environment. 1(10): 544–553. https://doi.org/10.1038/s43017-020-0080-8
  38. Leonard, L.; Ekwue, E. I.; Taylor, A.; Birch, R. (2019). Evaluation of a machine to determine maximum bulk density of soils using the vibratory method. Biosystems Engineering. 178: 109–117. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2018.11.006
  39. Liu, Z. Z.; Li, W. ; Yang, M. (2015). Two General Extension Algorithms of Latin Hypercube Sampling. Mathematical Problems in Engineering. 2015(1): 450492. https://doi.org/10.1155/2015/450492
  40. Mairghany, M.; Yahya, A.; Adam, N. M.; Mat Su, A. S.; Aimrun, W.; Elsoragaby, S. (2019). Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil and Tillage Research. 194: 104318. https://doi.org/https://doi.org/10.1016/j.still.2019.104318
  41. Manik, S. M.; Pengilley, G.; Dean, G.; Field, B.; Shabala, S.; Zhou, M. (2019). Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Frontiers in Plant Science. 10: 1–23. https://doi.org/10.3389/fpls.2019.00140
  42. Marchenko, D. D.; Matvyeyeva, K. S. (2021). Investigation of the process of surfacing and vibration deformation during the restoration of plowshares and discs of tillage machines. Problems of Tribology. 26(4/102): 34–41. https://doi.org/10.31891/2079-1372-2021-102-4-34-41
  43. Masola, M. J. (2020). Propagación lateral de la compactación por tránsito de la maquinaria agrícola: ¿Afecta la calidad del suelo, el intercambio gaseoso y la productividad de los cultivos?. https://hdl.handle.net/11185/5650
  44. Misha, S.; Sukirtee; Kamboj, P. (2024). Modern machineries and their use in sustainable agriculture. In: Sharma, D.; Bharti, R.; Kumjam, S. Modern Techniques To Sustainable Agriculture. pp. 89-102. First edition. Lucknow, India: Editorial EDU. 138p.
  45. Mirzavand, J.; Moradi-Talebbeigi, R. (2021). Relationships between field management, soil compaction, and crop productivity. Archives of Agronomy and Soil Science. 67(5): 675–686. https://doi.org/10.1080/03650340.2020.1749267
  46. Mondal, S.; Poonia, S. P.; Mishra, J. S.; Bhatt, B. P.; Karnena, K. R.; Saurabh, K.; Kumar, R.; Chakraborty, D. (2020). Short-term (5 years) impact of conservation agriculture on soil physical properties and organic carbon in a rice–wheat rotation in the Indo-Gangetic plains of Bihar. European Journal of Soil Science. 71(6): 1076–1089. https://doi.org/10.1111/ejss.12879
  47. Mwiti, F. M.; Gitau, A. N.; Mbuge, D. O. (2022). Edaphic Response and Behavior of Agricultural Soils to Mechanical Perturbation in Tillage. AgriEngineering. 4(2): 335–355. https://doi.org/10.3390/agriengineering4020023
  48. Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hafeez-ur-Rehman. (2017). Comparison of conventional and conservation rice-wheat systems in Punjab, Pakistan. Soil and Tillage Research. 169(2017): 35–43. https://doi.org/10.1016/j.still.2017.01.012
  49. Ngo-Cong, D.; Antille, D. L.; Th. van Genuchten, M.; Nguyen, H. Q.; Tekeste, M. Z.; Baillie, C. P.; Godwin, R. J. (2021). A modelling framework to quantify the effects of compaction on soil water retention and infiltration. Soil Science Society of America Journal. 85(6): 1931–1945. https://doi.org/10.1002/saj2.20328
  50. Or, D.; Keller, T.: Schlesinger, W. H. (2021). Natural and managed soil structure: On the fragile scaffolding for soil functioning. Soil and Tillage Research. 208: 104912. https://doi.org/10.1016/j.still.2020.104912
  51. Pattanayak, S.; Jena, S.; Das, P.; Maitra, S.; Shankar, T.; Praharaj, S.; Mishra, P.; Mohanty, S.; Pradhan, M.; Swain, D. K.; Pramanick, B.; Gaber, A.; Hossain, A. (2022). Weed management and crop establishment methods in rice (Oryza sativa L.) Influence the soil microbial and enzymatic activity in sub-tropical environment. Plants. 11(8). https://doi.org/10.3390/plants11081071
  52. Peng, L.; Tang, C.; Zhang, X.; Duan, J.; Yang, L.; Liu, S. (2022). Quantifying the effects of root and soil properties on soil detachment capacity in agricultural land use of Southern China. Forests. 13(11): 1788. https://doi.org/10.3390/f13111788
  53. Perea, J. d.; Cerquera, Y. (1999). Evaluación de sistemas de labranza para suelos de la cuenca alta del Magdalena. http://hdl.handle.net/20.500.12324/16156
  54. Phogat, M.; Dahiya, R.; Goyal, V.; Kumar, V. (2020). Impact of long term zero tillage on soil physical properties: A review. Journal of Pharmacognosy and Phytochemistry, 9(5): 2959–2967. https://doi.org/10.22271/phyto.2020.v9.i5ao.12792
  55. Puerres-Tipas, J. -F.; Ibarguen-Mondragón, E.; Cerón-Gómez, M. (2021). Aplicaciones del método de hipercubo latino para la estimación de parámetros de modelos matemáticas desde una perspectiva pedagógica. Boletín Redipe. 10(5): 208–219.
  56. Rivera-Montilla, N. E.; Cortes-Bernal, R. (2016). Caracterización y evaluación de la fertilidad actual de los suelos de la granja experimental de la Universidad Surcolombiana. https://goo.su/PIqzjU
  57. Rodríguez, D. P. (2024) El área sembrada de arroz para a junio de 2024 fue de 452.872 hectáreas, 9,5% más. https://n9.cl/avs4u
  58. Ruiz E. H.; Legarda B. L.; Amézquita C. E. (2001). Algunos cambios en las propiedades físicas de un suelo Vertisol, sometido a mecanización intensiva, en el valle geográfico del Río Cauca. Revista de Ciencias Agrícolas. 18(1): 151–165.
  59. Sánchez, C.; Arrieta, C.; Ramírez, M.; Montiel, V.; Garcés, R.; Rivera, B.; Palacio, M.; Benavidez, J. (1998). Preparación de suelos y adecuación predial para el cultivo de arroz secano en La Mojana. Encuentro Nacional de Labranza de Conservación, 227–240.
  60. Santiago-Arenas, R.; Fanshuri, B. A.; Hadi, S. N.; Ullah, H.; Datta, A. (2020). Nitrogen fertiliser and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation. Annals of Applied Biology. 176(3), 314–327. https://doi.org/https://doi.org/10.1111/aab.12585
  61. Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S. J. (2017). The effect of deep tillage on crop yield – What do we really know? Soil and Tillage Research. 174, 193–204. https://doi.org/https://doi.org/10.1016/j.still.2017.07.005
  62. Scott-Suarez, G. –M. (2022). Efecto de biofertilizantes como complemento para incrementar la productividad en el cultivo de arroz en el Canto Yaguachi. https://cia.uagraria.edu.ec/Archivos/SCOTT%20SUAREZ%20GEANELLA%20MARIUXI.pdf
  63. Shaheb, M. R.; Venkatesh, R.; Shearer, S. A. (2021). A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering. 46: 417-439. https://doi.org/10.1007/s42853-021-00117-7
  64. Singh, H.; Northup, B. K.; Rice, C. W.; Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar. 4(1): 8. https://doi.org/10.1007/s42773-022-00138-1
  65. Somasundaram, J.; Sinha, N. K.; Dalal, R. C.; Lal, R.; Mohanty, M.; Naorem, A. K.; Hati, K. M.; Chaudhary, R. S.; Biswas, A. K.; Patra, A. K.; Chaudhari, S. K. (2020). No-Till Farming and Conservation Agriculture in South Asia–Issues, Challenges, Prospects and Benefits. Critical Reviews in Plant Sciences. 39(3): 236–279. https://doi.org/10.1080/07352689.2020.1782069
  66. Stošić, M.; Brozović, B.; Vinković, T.; Ravnjak, B.; Kluz, M.; Zebec, V. (2020). Soil resistance and bulk density under different tillage system. Poljoprivreda. 26(1): 17–24. https://doi.org/10.18047/poljo.26.1.3
  67. Suzuki, L. E. A.; Reinert, D. J.; Alves, M. C.; Reichert, J. M. (2022). Critical limits for soybean and black bean root growth, based on macroporosity and penetrability, for soils with distinct texture and management systems. Sustainability. 14(5): 2958. https://doi.org/10.3390/su14052958
  68. Tater, A.; Vashisht, B. B. (2024). Long-term effect of crop establishment methods and tillage practices on soil physical properties in rice-wheat system. Communications in Soil Science and Plant Analysis. 55(11): 1613-1628. https://doi.org/10.1080/00103624.2024.2323073
  69. Van Loon, J.; Flores Rojas, M. (2022). Training of trainers manual on the operation, maintenance and repair of farm machinery. Rome: FAO. 100p. https://doi.org/10.4060/cb9549en
  70. Vergara-Cordero, K. A. (2022). Efecto de dos métodos de riego sobre el comportamiento fisiológico y rendimiento en variedades de arroz (Oryza sativa L.) de ciclo corto, intermedio y largo. https://repositorioslatinoamericanos.uchile.cl/handle/2250/4433670
  71. Villalba, J. V; Jarma, A. J.; Combatt, E. M. (2017). Respuesta fisiológica de cultivares de arroz a diferentes épocas de siembra en Córdoba, Colombia. Revista Temas Agrarios. 22(2): 9-19. https://doi.org/10.21897/rta.v22i2.940
  72. Wang, M.; Rong, L.; Li, Y.; Huang, J.; Jiao, Y.; Wei, X. (2024). Drainage of paddy terraces impacts structures and soil properties in the globally important agricultural heritage of Hani Paddy Terraces, China. International Soil and Water Conservation Research. 12(1): 64–76. https://doi.org/10.1016/j.iswcr.2023.06.002
  73. Wang, X.; Zhou, H.; Wang, S.; Zhou, H.; Ji, J. (2023). Methods for reducing the tillage force of subsoiling tools: A review. Soil and Tillage Research. 229: 105676. https://doi.org/10.1016/j.still.2023.105676
  74. Yadav, Y.; Kumar A. (2024). Effect of deep tillage on soil physical properties and wheat yield in rice wheat cropping system. International Journal of Multidisciplinary Research Transactions. 6: 1-21. https://doi.org/10.5281/zenodo.13905177
  75. Zabrodskyi, A. (2023). The effect of maintaining operating parameters of agricultural tires to minimize soil compaction. https://www.vdu.lt/cris/entities/etd/d85b6a78-565f-4729-80b1-cfbc515ba30b

Downloads

Download data is not yet available.