Optimizing artisanal plastic traps for monitoring and managing banana weevils: color, odor, and position
DOI:
https://doi.org/10.22267/rcia.20244103.236Keywords:
capture, control, Musaceae, pest, pheromone, pineappleAbstract
Banana weevil, Cosmopolites sordidus (Germar), and striped weevil, Metamasius hemipterus (Linnaeus), are pests of global importance in banana cultivation that are traditionally controlled using synthetic insecticides. Plastic traps offer an alternative method to managing these weevils. However, the effectiveness of artisanal traps, considering color, odor, position, and their influence on trapping efficacy, has been largely neglected. Here, we assessed artisanal plastic traps for capturing banana weevils, testing two trap colors (yellow and brown), two positions (horizontal and vertical), and five types of attractants: pineapple; pineapple combined with molasses; pseudostem; pseudostem combined with molasses; and the pheromone Cosmolure in Ecuadorian banana fields. Under controlled conditions, trap color and position did not significantly influence the preference for C. sordidus and M. hemipterus (P<0.05). Field bioassays revealed significant differences in the capture of C. sordidus based on trap position and odor attractants. While trap position did not affect the capture of M. hemipterus, the choice of attractant influenced insect capture rates. Cosmolure was the most effective attractant for capturing banana weevils, whereas pineapple baits attracted the highest number of stripped weevils. Over 10 days, the number of captured insects decreased for both weevils across different attractants. Our findings highlight the potential of artisanal plastic traps as a valuable tool for the integrated pest management (IPM) of C. sordidus and M. hemipterus in banana plantations.
Downloads
Metrics
References
Abera-Kalibata, A. M.; Hasyim, A.; Gold, C. S.; Van Driesche, R. (2006). Field surveys in Indonesia for natural enemies of the banana weevil, Cosmopolites sordidus (Germar). Biological Control. 37(1): 16-24. https://doi.org/10.1016/j.biocontrol.2005.11.009
Alpizar, D.; Fallas, M.; Oehlschlager, A. C.; Gonzalez, L. M. (2012). Management of Cosmopolites sordidus and Metamasius hemipterus in banana by pheromone-based mass trapping. Journal of Chemical Ecology. 38: 245-252. https://doi.org/10.1007/s10886-012-0091-0
Atakan, E.; Pehlivan, S. (2015). Attractiveness of various colored sticky traps to some pollinating insects in apple. Turkish Journal of Zoology. 39: 474-481. https://doi.org/10.3906/zoo-1403-62
Azmi, W. A.; Daud, S. N.; Hussain, M. H.; Wai, Y. K.; Chik, Z.; Sajap, A. S. (2014). Field trapping of adult red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curcilionidae) with food baits and synthetic pheromone lure in a coconut plantation. The Philippines Agriculture Scientist. 97: 409-415.
Bakaze, E.; Kofler, J.; Dzomeku, B. M.; Wünsche, J. (2020). Natural Compounds with Potential Insecticidal Properties against Banana Weevil Cosmopolites sordidus. American Journal of Sciences and Engineering Research. 3(4): 11-22.
Bakaze, E.; Tinzaara, W.; Gold, C.; Kubiriba, J. (2022). The Status of Research for the Management of the Banana Weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) in Sub-Saharan Africa. European Journal of Agriculture and Food Sciences. 4(2): 39-51. https://doi.org/10.24018/ejfood.2022.4.2.469
Cuevas, M.; Romero, C.; Carrillo, N. (2011). Evaluación de trampas artesanales y cebos naturales para la atracción de la mosca mexicana de la fruta (Anastrepha ludens Loew) (Diptera: Tephritidae) en mango (Mangifera indica L.). Boletín de la Sociedad Entomológica Aragonesa (S.E.A.). 49: 327-331.
De La Pava, N.; García, M. A.; Brochero, C. E.; Sepúlveda, P. A. (2020). Registros de Dryophthorinae (Coleoptera: Curculionidae) de la Costa Caribe colombiana. Acta Biológica Colombiana. 25(1): 96-103.
Fancelli, M.; Dias, A. B.; Delalibera, J. I.; Cerqueira de Jesus, S.; Souza do Nascimento, A.; De Oliveira e Silva, S.; Correa Caldas, R.; da Silva Ledo, C. A. (2013). Beauveria bassiana strains for biological control of Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae) in plantain. BioMed Research International. 2013(1): 184756. https://doi.org/10.1155/2013/184756
FAO. (2024). Banana Market Review 2023. Rome, Italy: FAO. 20p.
Figueroa, P.; López, V.; Silva, F.; González, H. (2017). Food attractants to increase pheromone-baited trap performance for Scyphophorus acupunctatus (Coleoptera: Dryophthoridae) in mezcal Maguey. Florida Entomologist. 100(1): 203-205. https://doi.org/10.1653/024.100.0135
Fu, B.; Li, Q.; Qiu, H.; Tang, L.; Zhang, X.; Liu, K. (2019). Evaluation of different trapping systems for the banana weevils Cosmopolites sordidus and Odoiporus longicollis. International Journal of Tropical Insect Science. 39: 35-43. https://doi.org/10.1007/s42690-019-00009-6
Giblin, R. M.; Pena, J. E.; Oehlschlager, A. C.; Perez, A. L. (1996). Optimization of semiochemical-based trapping of Metamasius hemipterus sericeus. Journal of Chemical Ecology. 22: 1389-1410.
Gold, C. S.; Pena, J. E.; Karamura, E. B. (2001). Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest Management Reviews. 6: 79–155. https://doi.org/10.1023/A:1023330900707
Guillen, C.; Tixier, P.; Tapia, A., Conejo, A. M.; Sandoval, J. A.; de Lapeyre de Bellaire, L. (2021). Can the banana weevil Cosmopolites sordidus be a vector of Fusarium oxysporum f.sp. cubense race 1? Unravelling the internal and external acquisition of effective inoculum. Pest Management Science. 77: 3002–3012. https://doi.org/10.1002/ps.6339
Guzmán, C. D.; Quevedo, J. N.; García, R. M. (2019). Alternativas para el control de picudo negro (Cosmopolites sordidus G.) en el cultivo de banano convencional. Revista Científica Agroecosistemas. 7(2): 103-110.
Hambalko, J.; Gajdoš, P.; Nicaud, J-M.; Ledesma, R.; Tupec, M.; Pichová, I.; Certík, M. (2021). Production of long chain fatty alcohols found in bumblebee pheromones by Yarrowia lipolytica. Frontiers in Bioengineering and Biotechnology. 8: 593419. https://doi.org/10.3389/fbioe.2020.593419
Heck, D. W.; Alves, G.; Mizubuti, E. S. G. (2021). Weevil borers affect the spatio-temporal dynamics of banana fusarium wilt. Journal of Fungi. 7: 329. https://doi.org/10.3390/jof7050329
Huang, J.; Pang, Y.; Cheng, G.; Wu, T.; Huang, Q.; Huang, X.; Yi, Q.; Zhang M.; Tang, S.; Fu, H.; Li, P. (2023). Biofertilizer made from a mixed microbial community can enhance the suppression of fusarium wilt of banana when combined with acid soil ameliorant. European Journal of Plant Pathology. 165: 333-348. https://doi.org/10.1007/s10658-022-02609-4
Lamin, S.; Abrar, A.; Arwinsyah; Kamal, M.; Sipahutar, A. N. (2022). The effect of some attractive media on the number of marriage partners, egg weight, and lifetime of black soldier fly (Hermetia illucens L.). Biological Research Journal. 8(2): 151-155.
Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C. (2021). Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agriculture, Ecosystems & Environment. 322: 107659.
Lozano, A.; Picciotti, U.; Lopez, F.; Lopez, J.; Porcelli, F.; Lopez, L. V. (2020). Volatile organic compounds from entomopathogenic and nematophagous fungi repel banana black weevil (Cosmopolites sordidus). Insects. 11: 509. https://doi.org/10.3390/insects11080509
Mago, M.; Yadav, A.; Gupta, R.; Garg, V. K. (2021). Management of banana crop waste biomass using vermicomposting technology. Bioresource Technology. 326: 124742. https://doi.org/10.1016/j.biortech.2021.124742
Mertilus, F.; Peña, J. E.; Ring, D.; Schowalter, T. (2017). Inexpensive artisanal traps for mass trapping of fruit flies (Diptera: Tephritidae) in Haiti. Florida Entomologist. 100(2): 390-395. https://doi.org/10.1653/024.100.0241
Mongyeh, E. T.; Ndamukong, K. J. N.; Okolle, J. N. (2015). Effects of insecticides with different modes of action in the control of banana weevils (Cosmopolites sordidus) in Cameroon. Journal of the Cameroon Academy of Sciences. 12(1): 3-9.
Nicolini, E. A.; Beauchêne, J.; Bonnal, V.; Hattermann, T. (2022). Chlordecone in basal trunk wood of native trees growing in abandoned banana plantations in Guadeloupe, France. Bois et Forêts des Tropiques. 352: 31-42.
Njau, N.; Mwangi, M.; Gathu, R.; Mbaka, J.; Muasya, R. (2011). Banana weevil (Cosmopolites sordidus) reduces availability of corms for seedling production through macropropagation technology. Journal of Animal & Plant Sciences. 12(1): 1537-1542.
Okolle, N. J.; Ngosong, C.; Nanganoa, L. T.; Dopgima, L. L. (2020). Alternatives to synthetic pesticides for the management of the banana borer weevil (Cosmopolites sordidus) (Coleoptera: Curculionidae). CAB Reviews. 15(026): 1-24. https://doi.org/10.1079/PAVSNNR202015026
Okonya, J. S.; Ocimati, W.; Nduwayezu, A.; Kantungeko, D.; Niko, N.; Blomme, G.; Legg, J. P.; Kroschel, J. (2019). Farmer reported pest and disease impacts on root, tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability. 11(6): 1592. https://doi.org/10.3390/su11061592
Ortiz, J. A.; Abril, M. F.; Pelaez, M. R.; Zalamea, T. S. (2020). Biomass yield and carbon abatement potential of banana crops (Musa spp.) in Ecuador. Environmental Science and Pollution Research. 28: 18741–18753. https://doi.org/10.1007/s11356-020-09755-4
Osorio, R.; López, J.; Cruz, E.; Márquez, C.; Salinas, R.; Cibrián, J. (2017). Reducing Cosmopolites sordidus populations and damage using traps baited with pheromone and plantain corm. Ecosistemas y Recursos Agropecuarios. 4(11): 243-253. https://doi.org/10.19136/era.a4n11.1172
Panigrahi, N.; Thompson, A.; Zubelzu, S.; Knox, J. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae. 276: 109735. https://doi.org/10.1016/j.scienta.2020.109735
Reddy, G. V.; Raman, A. (2011). Visual cues are relevant in behavioral control measures for Cosmopolites sordidus (Coleoptera: Curculionidae). Journal of Economic Entomology. 104: 430-442. https://doi.org/10.1603/EC10313
Reddy, G. V. P.; Cruz, Z. T.; Guerrero, A. (2009). Development of an efficient pheromone-based trapping method for the banana root borer Cosmopolites sordidus. Journal of Chemical Ecology. 35: 111-117. https://doi.org/10.1007/s10886-008-9580-6
Rhino, B.; Dorel, M.; Tixier, P.; Rise, J. M. (2010). Effect of fallows on population dynamics of Cosmopolites sordidus: Toward integrated management of banana fields with pheromone mass trapping. Agricultural and Forest Entomology. 12: 195-202.
Robinson, J. C.; Galán-Saúco, V. (2010). Bananas and plantains. Crop Production Science in Horticulture. 2nd ed. Wallingford, U.K.: CAB International. 311 p.
Sinuco, D.; Morales, A.; Duque, C. (2005). Componentes volátiles libres y glicosídicamente enlazados del aroma de la piña (Ananas comosus L.) variedad Perolera. Revista Colombiana de Química. 33(1): 47-56.
Tewari, S.; Leskey, T. C.; Nielsen, A. L.; Piñero, J. C.; Rodriguez, C. R. (2014). Use of pheromones in insect pest management, with special attention to weevil pheromones. En: Abrol, D. P. Integrated Pest Management. Current Concepts and Ecological Perspective. pp. 141-168. 1st Edition. San Diego, California: Academic Press. 576p.
Van der Kooi, C. J.; Dyer, A. G., Kevan, P. G.; Lunau, K. (2019). Functional significance of the optical properties of flowers for visual signalling. Annals of Botany. 123: 263-276. https://doi.org/10.1093/aob/mcy119
Van der Kooi, C.; Stavenga, D.; Arikawa, K.; Belusic, G.; Kelber, A. (2021). Evolution of insect color vision–From spectral sensitivity to visual ecology. Annual Review of Entomology. 66(23): 1-23. https://doi.org/10.1146/annurev-ento-061720-071644
Waweru, B.; Turoop, L.; Kahangi, E.; Coyne, D.; Dubois, T. (2014). Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana Musa sp. Biological Control. 74: 82-88. https://doi.org/10.1016/j.biocontrol.2014.04.002
Weissling, T.; Giblin-Davis, R.; Center, B.; Heath, R.; Peña, J. (2003). Oviposition by Metamasius hemipterus sericeus (Coleoptera: Dryophthoridae: Rhynchophorinae). Florida Entomologist. 86(2): 174-177.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista de Ciencias Agrícolas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.