contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Effect of calcium polysulfide on Diaphorina citri (Hemiptera: Liviidae) and its primary parasitoids

DOI
https://doi.org/10.22267/rcia.20254203.274
Submitted
April 9, 2025
Published
2025-12-17

Abstract

Huanglongbing (HLB) is a devastating disease with no current cure, affecting citrus plantations worldwide. Controlling its spread relies heavily on managing the Asian citrus psyllid (Diaphorina citri), the disease's primary vector. In response to the dependence on chemical insecticides, which can negatively impact biodiversity and induce pest resistance, this study evaluates calcium polysulfide as an alternative compatible with the parasitoids Tamarixia radiata and Diaphorencyrtus aligarhensis, specific biological control agents of D. citri. The research was conducted under laboratory conditions, testing six concentrations of calcium polysulfide across different developmental stages of the insects. Data distribution was reviewed using the Shapiro-Wilk normality test, and then an analysis of variance (ANOVA) with a significance level of p < 0.05, followed by Duncan’s test for mean comparisons. Results demonstrated that concentrations of 0.24% and 0.31% significantly reduced the survival of D. citri nymphs and eggs, without interfering with the emergence of parasitoids in the mummy stage, due to the protective effect of the pest’s cadaver (mummy) on the pupae. It was concluded that calcium polysulfide was not harmful to T. radiata and D. aligarhensis under exposure conditions typical of the mummy stage, and its detrimental effects on D. citri were restricted to specific developmental stages (egg and nymph), without affecting other stages evaluated. Therefore, its integration into integrated pest management (IPM) programs is feasible, provided that application timing minimizes exposure of more sensitive parasitoid stages (adults).

References

  1. Abbot, C. E. (1945). The toxic gases of lime-sulfur. Journal of Economic Entomology. 38(5): 618-620. https://doi.org/10.1093/jee/38.5.618a
  2. Alonso-Hernández, N.; Granados-Echegoyen, C.; Pérez-Pacheco, R.; Hinojosa-Garro, D.; Anaya-Hernández, A., Loera-Alvarado, E.; Gómez-Domínguez, N. S.; Landero-Valenzuela, N.; Aguado-Rodríguez, G. J.; Rodríguez-Pagaza, Y.; Sánchez-Rebolledo, F.; Diego-Nava, F. (2024). Illustrating the current geographic distribution of Diaphorina citri (Hemiptera: Psyllidae) in Campeche, Mexico: a maximum entropy modeling approach. Florida Entomologist. 107(1): 20240032. https://doi.org/10.1515/flaent-2024-0032
  3. Al-mazra’awi, M. S.; Ateyyat, M. (2009). Insecticidal and repellent activities of medicinal plant extracts against the sweet potato whitefly, Bemisia tabaci (Hom.: Aleyrodidae) and its parasitoid Eretmocerus mundus (Hym.:Aphelinidae). Journa of Pest Science. 82: 149–154. https://doi.org/10.1007/s10340-008-0233-x
  4. Bale, J. S.; Van Lenteren, J. C.; Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences. 363(1492): 761–776. https://doi.org/10.1098/rstb.2007.2182
  5. Castiglioni, E.; Vendramim, J. D.; Tamai, M. A. (2002). Evaluación del efecto tóxico de extractos acuosos y derivados de meliáceas sobre Tetranychus urticae (Koch) (Acari: Tetranychidae). Agrociencia. 6(2): 75-82. https://beta.acuedi.org/storage/books/pdf/5542.pdf
  6. Cavichioli, T. M.; Curtolo, M.; Cristofani-Yaly, M.; Rodrigues, J.; Coletta-Filho, H. D. (2024). Effects of ‘Candidatus’ Liberibacter asiaticus on the root system of Poncirus trifoliata hybrids as a rootstock for ‘Valencia’ scion. Horticulturae. 10(9): 942. https://doi.org/10.3390/horticulturae10090942
  7. Dimetry, N. Z.; Amer, S. A. A.; Reda, A. S. (1993). Biological activity of two neem seed kernel extracts against the two-spotted spider mite Tetranychus urticae Koch. Journal of Applied Entomology. 116: 308-312. https://doi.org/10.1111/j.1439-0418.1993.tb01201.x
  8. Fajardo, S. C.; Soto, A.; Kogson, J. F. (2013). Eficiencia de productos alternativos contra Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Boletín Científico del Museo de Historia Natural de la Universidad de Caldas. 17(1): 91-97. https://dialnet.unirioja.es/servlet/articulo?codigo=9525677
  9. Ferrándiz, J. (2015). Prevención y control de plagas en el olivar. Colache. https://esdocs.com/doc/1592248/prevenci%C3%B3n-y-control-de-plagas-en-el-olivar.
  10. Flores-Sánchez, J. L.; Mora-Aguilera, G.; Loeza-Kuk, E.; López-Arroyo, J. I.; Domínguez-Monge, S.; Acevedo-Sánchez, G.; Robles-García, P. (2015). Pérdidas en producción inducidas por Candidatus Liberibacter asiaticus en limón persa, en Yucatán, México. Revista Mexicana de Fitopatología. 33(2): 195-210. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092015000200195
  11. Hoddle, M. S.; Bistline East, A.; Hoddle, C. D. (2014). Successful biological control of Asian citrus psyllid, Diaphorina citri, in California. Biocontrol News and Information. 36(1): 1N–12N.
  12. Montag, J.; Schreiber, L.; Schonherr, J. (2005). An in vitro study on the infection activities of hydrated lime and lime sulphur against apple scab (Venturia inaequalis). Journal of Phytopathology. 153: 485-491. https://doi.org/10.1111/j.1439-0434.2005.01007.x
  13. Restrepo-García, A. M.; Soto-Giraldo, A. (2017). Control alternativo de Diaphorina citri Kuwayama (Hemiptera: Liviidae) utilizando caldo sulfocálcico. Boletín Científico del Museo de Historia Natural de la Universidad de Caldas. 21(2): 51-60. https://doi.org/10.17151/bccm.2017.21.2.4
  14. Schmutterer, H. (1997). Insect growth-disrupting and fecundity reducing ingredients from the neem and chinaberry trees. In: Morgan, E. D.; Mandava, N. B. (Eds.). CRC Handbook of natural pesticides. pp. 119-170. CRC Press.
  15. Smaili, M.; Boutaleb, A.; Blenzar, A. (2020). Beneficial insect community of Moroccan citrus groves: Assessment of their potential to enhance biocontrol services. Egyptian Journal of Biological Pest Control. 30(47). https://doi.org/10.1186/s41938-020-00241-0
  16. Soto, A.; Venzon, M.; Pallini, A. (2011). Integración de control biológico y de productos alternativos contra Tetranychus urticae (Acari: Tetranychidae). Revista U.D.C.A. Actualidad y Divulgación Científica. 14(1): 23-29. http://scielo.org.co/pdf/rudca/v14n1/v14n1a04.pdf
  17. Tsai, J. H.; Liu, Y. H. (2000). Biology of Diaphorina citri (Homoptera: Psyllidae) on four host plants. Journal of Economic Entomology. 93(6): 1721-1725. https://doi.org/10.1603/0022-0493-93.6.1721
  18. Vankosky, M. A.; Hoddle, M. S. (2019). An assessment of interspecific competition between two introduced parasitoids of Diaphorina citri (Hemiptera: Liviidae) on caged citrus plants. Ecology and Evolution. 7(16): 6483–6490. https://doi.org/10.1111/1744-7917.12490
  19. Venzon, M.; Pallini, A.; Fadini, M. A. M.; Oliveira, H., Miranda, V. S.; de Andrade, A. P. S. (2007). Controle alternativo de ácaros em hortaliças. In: Zambolim, L. (Ed.). Manejo integrado de doenças e pragas hortaliças. pp. 607-625. Viçosa: UFV.
  20. Wan, B.; Yu, Z.; Jiang, Y.; Hu, W.; Zhang, C.; Huang, J.; Liu, Y.; Jiang, C.; Xia, C.; Poirié, M.; Gatti, J. L.; Xia, Bin. (2024). Differential physiological effects of endo- and ecto-parasitoid venoms on the Asian citrus psyllid Diaphorina citri. Entomologia Generalis. 44(1): 201–209. https://doi.org/10.1127/entomologia/2023/2247
  21. Yan, Z.; Zhang, Q.; Zhang, N.; Li, W.; Chang, C.; Xiang, Y.; Lya, C.; Jiang, T.; He, W.; Luo, J.; Xu, Y. (2020). Repellency of forty‐one aromatic plant species to the Asian citrus psyllid, vector of the bacterium associated with huanglongbing. Ecology and Evolution. 10(23): 12940–12948. https://doi.org/10.1002/ece3.6876

Downloads

Download data is not yet available.