contadores
Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 42 No. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Impacts of three ascorbic acid application methods on the growth of salt-affected tomato seedlings : English

DOI
https://doi.org/10.22267/rcia.20254203.276
Submitted
June 2, 2025
Published
2025-12-22

Abstract

Ascorbic acid (AsA) is a well-known antioxidant that improves plant tolerance to salt stress; however, its effectiveness has not yet been sufficiently demonstrated depending on the method of application. In this context, this study was conducted to investigate the effects of 1 mM AsA applied as a priming agent (AsA/P), through the rooting medium (AsA/R), or via foliar spraying (AsA/F) on the growth, key biochemical parameters, and the antioxidant defense system of tomato seedlings (cv. Rio Grande)grown for two weeks in the presence of 100 mM NaCl. Results showed a noticeable reduction in growth traits, with significant decreases in relative water content (RWC), chlorophyll, total carbohydrates, proline, polyphenols, and AsA content, as well as in the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). However, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were significantly increased in salt-treated compared to control seedlings. Regardless of the application method, AsA improved seedling growth and increased RWC, chlorophyll, total carbohydrates, and proline contents. Furthermore, the contents of AsA and polyphenols, as well as the activities of SOD, CAT, and APX, were significantly enhanced, leading to a substantial decrease in the contents of H2O2 and MDA. The results also indicated that the AsA-induced mitigating effects were more prominent with the AsA/R method, followed by the AsA/F, whereas the AsA/P method was less effective. In conclusion, compared to the AsA/F and AsA/P methods, the AsA/R treatment can beconsidered an efficient and promising method to ameliorate the growth of tomato seedlings in salt-affected soils.

References

  1. Aazami, M. A.; Rasouli, F.; Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology. 21(1): 597. https://doi.org/10.1186/s12870-021-03379-7
  2. Abd-Elgawad, H.; Zinta, G.; Hegab, M. M.; Pandey, R.; Asard, H.; Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs.Frontiers in Plant Science. 7: 276. https://doi.org/10.3389/fpls.2016.00276
  3. Agami, R. A. (2014). Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. BiologiaPlantarum. 58: 341-347. https://doi.org/10.1007/s10535-014-0392-y
  4. Ajila-Celi, G. E.; Lata-Tenesaca, L. F.; Calzada, K. P.;Alves, R. C.;da Cruz, M. C. P.; Junior, J. S. P.;Carrega, W. C.; Gratão, P. L. (2025). Exogenous ascorbic acid mitigates salt-induced damage in soybean by modulating photosynthesis, antioxidant defense, and ionic homeostasis. Acta PhysiologiaePlantarum. 47:26 https://doi.org/10.1007/s11738-025-03770-z
  5. Alnusairi, G. S.; Mazrou, Y. S.; Qari, S. H.; Elkelish, A. A.; Soliman, M. H.; Eweis, M.; Abdelaal, K.; El-Samad, G. A.; Ibrahim, M. F.; El-Nahhas, N. (2021). Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants.10(8): 1693. https://doi.org/10.3390/plants10081693
  6. Aly, A. A.; Khafaga, A. F.; Omar G. N. (2012). Improvement the adverse effect of salt stress in Egyptian clover (Trifoliumalexandrinum L.) by ascorbic acid application through some biochemical and RT-PCR markers. Journal of Applied Phytotechnology in Environmental Sanitation. 1(2): 91-102.
  7. Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry.156: 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  8. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology.24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
  9. Bates, L. S.; Waldren, R.P.;Teare, I. (1973). Rapid determination of free proline for water stress studies. Plant and Soil.39: 205-207. https://doi.org/10.1007/BF00018060
  10. Billah, M.; Rohman, M. M.; Hossain, N.; Uddin, M. S. (2017). Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. African Journal of Agricultural Research.12(17): 1437-1446. https://doi.org/10.5897/AJAR2017
  11. Cheesman, J.M. (1993). Plant growth modelling without integrating mechanisms. Plant Cell & Environment.16(2): 137-147. https://doi.org/10.1111/j.1365-3040.1993.tb00855.x
  12. Chen, X.; Han, H.; Cong, Y.; Li, X.; Zhang, W.; Wan, W.; Cui, J.; Xu, W.;Diao, M.;Liu H. (2023). The protective effect of exogenous ascorbic acid on photosystem inhibition of tomato seedlings induced by salt stress. Plants.12(6): 1379. https://doi.org/10.3390/plants12061379
  13. Chen, X.; Jiang, Y.; Cong, Y.; Liu, X.; Yang, Q.; Xing, J.; Liu, H. (2024). Ascorbic acid mitigates salt stress in tomato seedlings by enhancing chlorophyll synthesis pathways. Agronomy.14(8): 1810. https://doi.org/10.3390/agronomy14081810
  14. Chen, X.; Zhou, Y.; Cong, Y.; Zhu, P.; Xing, J.; Cui, J.; Xu, W.; Shi, Q.;Diao, M.; Liu, H. (2021). Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. Frontiers in Plant Sciences. 12: 594400. https://doi.org/10.3389/fpls.2021.594400
  15. El-Hawary, M.M.;Hashem, O.S.M.; Hasanuzzaman.M. (2023). Seed priming and foliar application with ascorbic acid and salicylic acid mitigate salt stress in wheat. Agronomy.13(2): 493. https://doi.org/10.3390/agronomy13020493
  16. El-Sabagh, A.; Islam, M. S.;Skalick, M.; Raza, M. A.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M. A.;Ratnasekera, D.; Singhal, R. K.; Ahmed, S.; Kumari, A.; Wasaya, A.;Sytar, O.;Brestic, M.;Çig, F.;Erman, M.; Habib Ur Rahman, M., Ullah, N. & Arshad, A. (2021). Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Frontiers in Agronomy.3: 661932. https://api.semanticscholar.org/CorpusID:235761470
  17. Fu, J.; Huang, B. (2001). Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany.45(2): 105-114. https://doi.org/10.1016/S0098-8472(00)00084-8
  18. Giannopolitis, C. N.; Ries, S. K. (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology.59(2): 309-314. https://doi.org/10.1104/pp.59.2.309
  19. Guo, S.; Ma, X.; Cai, W.; Wang, Y.; Gao, X.; Fu, B. ;Li, S. (2022). Exogenous proline improves salt tolerance of alfalfa through modulation of antioxidant capacity, ion homeostasis, and proline metabolism. Plants.11(21): 2994. https://doi.org/10.3390/plants11212994
  20. Hasanuzzaman, M.; Raihan, M. R. H.; Alharby, H. F.; Al-Zahrani, H. S.; Alsamadany, H.; Alghamdi, K. M.; Ahmed, N.;Nahar, K. (2023). Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and glyoxalase system. Agronomy.13(2)361.https://doi.org/10.3390/agronomy13020361
  21. Hassan, A.; Fasiha, A. S.; Hamzah, S. M.; Yasmin, H.; Imran, M.; Riaz, M.; Ali, Q.; Ahmad, J. F.; Mobeen, A. S.; Ali, S.; Abdullah, A. A.;Nasser, A. M. (2021). Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences.28(8): 4276-4290. https://doi.org/10.1016/j.sjbs.2021.03.045
  22. Hofius, D.; Bornke, F. (2007). Photosynthesis, carbohydrate metabolism and source-sink relations. In: Bradshaw, J.; Gebhardt, C.; Govers, F.; Mackerron, D. K. L.; Taylor, M.A.; Ross, H. A.Potato Biology and Biotechnology.pp. 257-285.Elsevier Science. 823p.https://doi.org/10.1016/B978-044451018-1/50055-5
  23. Horchani, F.; Bouallegue, A.; Bouazzi, A.; Abbes, Z. (2025). Alleviating salt-induced effects in tomato via simultaneous application of salicylic acid and potassium. Russian Journal of Plant Physiology.72: 8. https://doi.org/10.1134/S1021443724609261
  24. Horchani, F.; Bouallegue, A.; Namsi, A.; Abbes, Z. (2023). Exogenous application of ascorbic acid mitigates the adverse effects of salt stress in two contrasting barley cultivars through modulation of physio-biochemical attributes, K+/Na+ homeostasis, osmoregulation and antioxidant defense system. Russian Journal of Plant Physiology. 70: 219. https://doi.org/10.1134/S1021443723602598
  25. Horchani, F.; Bouallegue, A.; Namsi, A.; Abbes, Z. (2024). Simultaneous application of ascorbic acid and proline as a smart approach to mitigate the adverse effects of salt stress in wheat (Triticum aestivum). Biology Bulletin. 51(5): 1346-1363. https://doi.org/10.1134/S1062359024607171
  26. Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A Review. International Journal of Molecular Sciences. 23(9): 5186. https://doi.org/10.3390/ijms23095186
  27. Jha, U.; Bohra, A.; Jha, R.; Parida, S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports.38(3): 255-277.
  28. Kanwal, R.; Maqsood, M.F.; Shahbaz, M., Naz, N., Zulfiqar, U., Muhammad, F. A., Jamil, M., Khalid, F., Qasim, A., Muhammad, A. S., Talha C., Hayssam M. A. & Waleed A. A. A. (2024). Exogenous ascorbic acid as a potent regulator of antioxidants, osmo-protectants, and lipid peroxidation in pea under salt stress. BMC Plant Biology. 24: 247.https://doi.org/10.1186/s12870-024-04947-3
  29. Liu, H.; Meng, F.; Miao, H.; Chen, S.; Yin, T.; Hu, S.; Shao, Z.; Liu,Y.; Gao, L.; Zhu, C.; Zhang, B.;Wang, Q. (2018). Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry.263: 194-200. https://doi.org/10.1016/j.foodchem.2018.04.124
  30. Manaa, A.; Gharbi, E.; Mimouni, H.; Wasti, S.; Aschi-Smiti, S.; Lutts, S.; Ben Ahmed, H. (2014). Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. SouthAfrican Journal of Botany.95: 32-39. https://doi.org/10.1016/j.sajb.2014.07.015
  31. McCready, R. M.; Guggolz, J.; Silviera, V.; Owes, H. S. (1950). Determination of starch and amylase in vegetables, application to peas. Analytical Chemistry.22(9): 1156-1158. https://doi.org/10.1021/ac60045a016
  32. Miao, Y.; Luo, X.; Gao, X.; Wang, W.; Li, B.; Ho, L. (2020). Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. ScientiaHorticulturae. 272: e109577. https://doi.org/10.1016/j.scienta.2020.109577
  33. Misra, N.;Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science. 177(3): 181-189. https://doi.org/10.1016/j.plantsci.2009.05.007
  34. Nasrallah, A.K.; Kheder, A.A.; Kord, M.A.; Fouad, A.S.; El-Mogy, M.M.; Atia, M.A. (2022). Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulture.8(1): 75.https://doi.org/10.3390/horticulturae8010075
  35. Nazar, R.; Umar, S.; Khan N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling and Behavior.10(3): e1003751. https://doi.org/10.1080/15592324.2014.1003751
  36. Njus, D.; Kelley, P. M. ; Tu, Y. J. ;Schlegel, H. B. (2020). Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radical Biology and Medicine,159: 37-43. https://doi.org/10.1016/j.freeradbiomed.2020.07.013
  37. Rahman, A.;Alam, M. U.; Hossain, M. S.; Mahmud, J. A.; Nahar, K.; Fujita, M.;Hasanuzzaman, M. (2022). Exogenous gallic acid confers salt tolerance in rice seedlings: Modulation of ion homeostasis, osmoregulation, antioxidant defense, and methylglyoxal detoxification systems. Agronomy.13(1): 16. https://doi.org/10.3390/agronomy13010016
  38. Sairam, R. K.; Veerabhadra-Rao, K.; Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science.163(5): 1037-1046. https://doi.org/10.1016/S0168-9452(02)00278-9
  39. Sarker, U.; Oba S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science.11: 559876. https://doi.org/10.3389/fpls.2020.559876
  40. Seleiman, M. F.; Semida, W. M.; Rady, M. M.; Mohamed, G. F.;Hemida, K. A.;Alhammad, B. A.; Hassan, M. M.;Shami, A. (2020). Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants.
  41. (12): 1783. https://doi.org/10.3390/plants9121783
  42. Silveira, L. F.; Olmos, F.; Rodaand, S. A.;Long, A. J. (2003). Notes on the seven-colouredTanager Tanagafastuosa in north-east Brazil. Cotinga.20: 82-88.
  43. Xu, L.; Chen, H.; Zhang, T.; Deng, Y.; Yan, J.; Wang, L. (2022). Salicylic acid improves the salt tolerance capacity of Saponaria officinalis by modulating its photosynthetic rate, osmoprotectants, antioxidant levels, and ion homeostasis. Agronomy.12(6): 1443. https://doi.org/10.3390/agronomy12061443
  44. Younis, M. E.; Hasaneen, M. N.; Kazamel, A. M. (2010). Exogenously-applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Viciafaba seedlings. Protoplasma.239. 39-48. https://doi.org/10.1007/s00709-009-0080-5
  45. Zarai, B.; Walter, C.; Michot, D.;Montoroi, J. P.;Hachicha, M. (2022). Integrating multiple electromagnetic data to map spatiotemporal variability of soil salinity in Kairouan region, Central Tunisia. Journal of Arid Lands.14: 186-202. https://doi.org/10.1007/s40333-022-0052-6
  46. Zhao, S.; Zhang, Q. ; Liu, M. ; Zhou, H. ; Ma, C. ; Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences.22(9): 4609. https://doi.org/10.3390/ijms22094609
  47. Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. (2024). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics.51(1): 16- 34. https://doi.org/10.1016/j.jgg.2023.08.007

Downloads

Download data is not yet available.