Genetic diversity of 40 genotypes of cape gooseberry Physalis peruviana L. using microsatellite markers

Authors

DOI:

https://doi.org/10.22267/rcia.1936E.110

Keywords:

heterozygosity, loci, molecular marker, variability, SSRs

Abstract

Physalis peruviana L., also called cape gooseberry, is widely known for its nutraceutical and economic importance. However, little is known about the genetic diversity of this species at the molecular level, mainly due to its status as an orphan species. Therefore, knowledge of the genetic diversity of germplasm collections of P. peruviana will allow determining the level of genetic variability that is available to breeders for selection processes. This study assessed the genetic variation present in 40 cape gooseberry genotypes using six SRR (simple sequence repeats) molecular markers selected based on their high polymorphism in P. peruviana L. The collection was divided into three populations: DH (double haploid lines), FT (Fusarium oxysporum-tolerant genotype), and UDENAR (Universidad de Nariño). We detected 7.33 alleles using GenAlex v. 6.5 and Arlequin 3.5.2 software. Among the six markers used, SSR15 and SSR138 were the most informative. Together, these markers indicated that 22.2% of loci were polymorphic with an average expected heterozygosity of 0.09, which is considered low. The AMOVA showed that the variance within genotypes contributes to 100% of the total variance, indicating the absence of population structure. Overall, we conclude that the level of variability among genotypes is low.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Analdex - Asociación Nacional de Comercio Exterior (2018). Informe de exportaciones de Uchuva 2018. Retrieved from https://www.analdex.org/2018/02/26/mercado-de-la-uchuva/

Alejos, L., Aragón, M. & Cornejo, A. (2014). Extracción y purificación de ADN. En: Cornejo, A., Serrato, A., Rendón, B., Rocha, M. Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos. pp. 1-26. Primera edición. México, D.F.: Instituto Nacional de Ecología y cambio climático (INECC). 256p.

Bonilla, M., Piedrahíta, K., Mauricio, A., Terranova, P., Amariles, D., Eduardo, J. & Flórez, M., (2008). Caracterización molecular de 43 accesiones de uchuva de seis departamentos de Colombia. Acta Agron. 57(2): 109-115

Bushakra, J., Lewers, K., Staton, M., Zhebentyayeva, T. & Saski, C. (2015). Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.). BMC Plant Biol. 15(1): 258. doi: 10.1186/s12870-015-0629-8

Castro, J., Ocampo, Y. & Franco, L. (2015). Cape Gooseberry (Physalis peruviana L.) calyces ameliorate TNBS acid-induced colits in rats. Journal of Crohn´s and Colits, 9(11): 1004-1015. doi: 10.1093/ecco-jcc/jjv132

Chacón, M., Sánchez, Y. & Barrero, L. (2016). Genetic structure of a Colombian Cape gooseberry (Physalis peruviana L.) collection by means of microsatellite markers. Agronomía Colombiana. 34(1): 5-16. doi: 10.15446/agron.colomb.v34n1.52960

Choudhary, P., Kumar, G., Bagati, S., Jamwal, D., Bhadwal, D., Raj, V. & Kumar, P. (2018). Evaluation of genetic variability in tomato (Solanum lycopersicum L. Mill) genotypes using microsatellite markers. Int.J.Curr.Microbiol.App.Sci. 7(1): 2117-2124. doi: 10.20546/ijcmas.2018.701.255

Costa, S. (2014). Variabilidad genética de Chenopodium quinoa Wild. En el Noreste Argentino y su relación con la dispersión de la especie. Retrieved from http://sedici.unlp.edu.ar/bitstream/handle/10915/43830/Tesis.pdf?sequence=4&isAllowed=y

Ellis, J. & Burke, J., (2007). EST-SSRs as a resource for population genetic analyses. Heredity. 99(2): 125-132. doi: 10.1038/sj.hdy.6801001

Espósito, M., Cravero, V. P., Martin, E. & Cointry, E. L. (2011). Use of morphological, biochemical and SRAP molecular markers to differentiate varieties of Cynara cardunculus L. (Asteraceae). Revista de la Facultad de Ciencias Agrarias. 43(2): 35-45.

Excoffier, L., Smouse, P. & Quattro, J (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 131(2), 479-491.

Excoffier L., Laval, G. & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 1:47–50.

Fierro, F. (2014). Electroforesis de ADN. En: Cornejo, A., Serrato, A., Rendón, B. & Rocha, M. Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos. pp. 27-52. Primera edición. México, D.F.: Instituto Nacional de Ecología y cambio climático (INECC) 256p.

Garzón, G., Osorio, J., Delgadillo, P., Mayorga, F.,Enciso, F., Landsman, D., Mariño, L. & Barrero, L. (2015). Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers. Plante gene. (4): 29-37. doi: 10.1016/j.plgene.2015.09.003

Garzón-Martínez, G., Zhu, Z., Landsman, D., Barrero, L, y Mariño, L. (2012). The Physalis peruviana leaf transcriptome: assembly, annotaton and gene model predicton. BMC Genomics. 13(1): 151-162.

Ge, H., Liu, Y., Jiang, M., Zhang, J., Han, H. & Chen, H. (2013). Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci. Hortic. 162: 71–75. doi: 10.1016/j.scienta.2013.08.004

GenJET Plant Genomic DNA Purification (2017). Kit de extracción de ADN. Retrieved from https://www.thermofisher.com/order/catalog/product/K0791#/K0791

Gil, J. (2015). Identificación de microsatélites polimórficos por amplificación cruzada en Anadara similis (Mollusca: Arcidae). Retrieved from http://bibliotecadigital.univalle.edu.co/bitstream/10893/7973/1/CB-0516677.pdf

González, C.A. & Barrero, L.S. (2011). Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Colombia: Cámara de Comercio de Bogotá. 44 p.

Hartl, D. & Clark, G. (1997). Principles of Population Genetics. Sunderland, Massachusetts: Sinauer Associates.

Hassan, H., Serag, H., Qadir, M. & Ramadán, M. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cyclevarrest. Biomedicine & Pharmacotherapy. 94(1): 1129-1137. doi: 10.1016/j.biopha.2017.08.014

Jin, Z., Mashuta, M., Stolowich, J., Vaisberg, J., Stivers, N., Bates, P., Lewis, W. & Hammond, G. (2012). Physangulidines A, B, and C: three new antiproliferative withanolides from Physalis angulata L. Org. Lett. 14(5): 1230-1233. doi: 10.1021/ol203498a

Juyó, D. (2012). Diversidad genética y estructura poblacional en genotipos diploides de papa (Trabajo de grado Maestría). Universidad Nacional de Colombia, Bogotá. Colombia.

Juyó, D., Sarmiento, F., Álvarez, M., Brochero, H., Gebhardt, C. & Mosquera, T. (2015) Genetc diversity and populaton structure in diploid potatoes of group Phureja. Crop Science, 55(2): 760-769. doi: 10.2135/cropsci2014.07.0524

Kalia, R., Rai, M.K., Kalia, S., Singh R. & Dhawan, A.K. (2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica. 177(3): 309-334. doi: 10.1007/s10681-010-0286-9

Kindscher, K., Cao, C., Gallagher, R., Zhang, H., Long, Q. & Timmermann, B. (2014). Comparison of bioactive secondary metabolites in experimental and natural populations of wild tomatillos, Physalis longifolia Nutt. Ethnobot. Res. Appl. 12: 175-182

Knapp H., Winterhalter P. & Duque C. (2001). Glycosidically bound flavor compounds of Cape gooseberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry. 49(4): 1904-1908. doi: 10.1021/jf0011743

Kumar, P., Gupta, V., Misra, A., Modi, D., Pandey, B. (2009). Potential of molecular markers in plant biotechnology. Plant Omics J. 2(4): 141-162.

Lagos, T., Vallejo, F., Criollo, H. & Muñoz, J. (2008). Biología reproductiva de la uchuva. Acta Agron. 57(2): 81-87

Liberato, S., Sánchez, E., Argüelles, J., González, C., Núñez, V. & Barrero, L. (2014). Cytogenetics of Physalis peruviana L. and Physalis floridana rydb. Genotypes with differential response to Fusarium oxysporum. Rev. Corpoica Cien. Tecnol. 15(1): 51-61.

Martínez, G., Guarín, J., Durán, P., Mayorga, F., Rodriguez, F., Landsman, D., Ramírez, L. & Barrero, L. (2015). Genetic diversity and Population structure in Physalis peruviana and related taxa based on Indels and SNPs derived from COSII and IRG markers. Plan Gene, 4(1): 29-37. doi: 10.1016/j.plgene.2015.09.003

Morillo, A., Gonzales, J. & Morillo, Y. (2018). Caracterización de la diversidad genética de uchuva (Physalis peruviana L.) en Boyacá. Biotecnología en el sector agropecuario y agroindustrial. 16(1): 26-33.

Morillo, A., Villota, D., Lagos, T., Ordóñez, R. (2011). Morphological and Molecular Characterization of 18 Introductions of Cape Gooseberry Physalis peruviana L. collection of the University of Nariño. Revista Facultad Nacional de Agronomía Medellín. 64(2): 6043-6053.

Nei, M. 1972. Molecular evolutionary genetics. New York, NY: Columbia University Press.

Ortiz, D., Bohórquez, M. Duque., Tohme, J., Cuéllar, D. & Mosquera, V. (2012). Evaluating purple passion fruit (Passiflora edulis Sims f. edulis) genetic variability in individuals from commercial plantations in Colombia. Genet. Resour. Crop Evol. 59(6): 1089-1099. doi: 10.1007/s10722-011-9745

Osorio, J., Enciso, C., Gonzalez, N., Fernández, L., Mueller, L. & Barrero, L. (2016). Associaton analysis for disease resistance to Fusarium oxysporum in Cape gooseberry (Physalis peruviana L.). BMC Genomics. 17(1): 1-16. doi: 10.1186/s12864-016-2568-7

Peakall, R. & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update. Bioinformatics. 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460

Puente, L., Pinto, C., Castro, E. & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res. Int. 44(7): 1733-1740. doi: 10.1016/j.foodres.2010.09.034

Ramadán, M. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Res. Int. 44(7): 1830–1836. doi: 10.1016/j.foodres.2010.12.042

Ruiz, X., Almanza, P., Morillo, Y., Morillo, A., Gonzales, A., Caicedo, A. & Munñóz, J. (2015) Genetic comparison from three sources of cocoa Theobroma cacao L. using microsatellites markers. Biotecnología en el sector agropecuario y agroindustrial. 13 (1): 10-18.

Simbaqueba, J., Sánchez, P., Sánchez, E., Núñez, V., Chacón, M., Barrero, L. & Mariño, L. (2011). Development and characterization of microsatellite markers for the Cape Gooseberry Physalis peruviana. Plos one. 6 (10): 1-6. doi: 10.1371/journal.pone.0026719

Simbaqueba, J. (2017). Analysis of Fusarium oxysporum effectors shared between strains that infect Cape gooseberry and tomato. Retrieved from https://pdfs.semanticscholar.org/b4fb/a098890c15a4a341508dad8ebc0c36330bd2.pdf

Suescún, L., Betancourt, E., Marroquin, M., García, F. & Núñez, V. (2011). Producción de plantas genéticamente puras de uchuva. Bogotá: Cámara de Comercio de Bogotá, Novacampo, MADR, 44p.

Takimoto, T., Kanbayashi, Y., Toyoda, T., Adachi, Y., Furuta, C., Suzuki, K., Miwa, T. & Bannai, M. (2014). 4β-hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-KB signaling in diabetic mouse adipose tissue. Int. J. Obes. 38(11): 1432-1439.

Vargas, O., Pérez, L.., Zamora, P., Rodríguez, A., (2010). Assessing genetic diversity in Mexican husk tomato species (Physalis L., Solanaceae). Plant Mol. Biol. Rep. 29(3): 733-738. doi: 10.1007/s11105-010-0258-1

Wei, J., Hu, X., Yang, J. & Yang, W. (2012). Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS ONE 7, e50164. doi: 10.1371/journal.pone.0050164

Wright, S. (1978). Evoluton and the genetics of populatons, variability within and among natural populatons. Chicago (USA): University of Chicago Press. 566p

Wu, S., Chang, S., Lin, D., Wang, S., Hou, F. & Ng, L. (2009) Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells. Food and Chemical Toxicology. 47(6): 1132-1138. doi: 10.1016/j.fct.2009.01.044

Yadav, O., Mitchell, S., Zamora, A., Fulton, T. & Kresovich, S. (2007). Development of new simple sequence repeat markers for pearl millet. Journal of SAT Agricultural Research. 3(1). 34.

Yen, C., Chiu, C., Chang, F., Chen, J., Hwang, C., Hseu, Y., Yang, H., Lee, A., Tsai, M. & Guo, Z. (2010). 4 -Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G 2/M arrest. BMC cáncer. 10(1):46. doi: 10.1186/1471-2407-10-46

Downloads

Additional Files

Published

2019-10-16

How to Cite

Delgado-Bastidas, N., Lagos-Santander, L. K., & Lagos-Burbano, T. C. (2019). Genetic diversity of 40 genotypes of cape gooseberry Physalis peruviana L. using microsatellite markers. Revista De Ciencias Agrícolas, 36(E), 95–107. https://doi.org/10.22267/rcia.1936E.110