Carbon storage potential of windbreaks in the United States

Autores/as

DOI:

https://doi.org/10.22267/rcia.1936E.111

Palabras clave:

Agroforestry systems, shelterbelts, biomass, windbreak designs, climate change

Resumen

In the United States of America, agriculture is performed on large farms of monocultures, affecting ecosystems and making a great contribution to climate change. The carbon storage potential for twelve field windbreak designs containing one-, two- and three-rows and nine farmstead windbreaks encompassing three- to ten-rows of mixed tree species were analyzed in nine regions: Northern Lake States (NLS), Corn Belt (CB), Southern Plains (SP), Delta States (DS), Appalachia (AP), Rocky Mountains North (RMN), Rocky Mountains South (RMS), North East (NE), y Northern Plains (NP), using the US Forest Inventory and Analysis database and allometric equations.  Carbon storage potentials for different field windbreak designs across regions ranged from 0.3 Mg C km-1 yr-1 for a single-row small-conifer windbreak in the Northeast region to 5.8 Mg C km-1 yr-1 for a three-row tall-deciduous windbreak in the Appalachia region.  Carbon storage potentials for farmstead windbreaks ranged from 0.8 Mg C 300 m-1 yr-1 for a three-row of mixed tree species windbreak in the Rocky Mountain North to 12.7 Mg C 300-1 yr-1 for a ten-row of mixed tree species windbreak in Delta States region.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Amicheva, B.Y., Murray J.B., Werner A.K., Colin, P.L., Suren, K.J. Piwoward, J.M. & Van Rees K, C.J. (2016). Carbon sequestration by white spruce shelterbelts in Saskatchewan, Canada: 3PG and CBM-CFS3 model simulations. Ecological Modelling. 325: 35-46. doi: https://doi.org/10.1016/j.ecolmodel.2016.01.003

Bailey, R.G. (1995). Description of the ecoregions of the United States. 2nd ed.(map). Washington DC: Miscellaneous Publication. 1391:126p.

Ballesteros, W. (2015). Carbon storage potential of windbreaks on agricultural lands of the continental United States. Recovered from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1119&context=natresdiss

Brandle, J.R., Hintz, D.L. & Sturrock, J.W. (1988). Windbreak Technology. Amsterdam: Elsevier Science Publishers. 598p.

Brandle, J.R., Hodges, L., Tyndall, J. & Sudmeyer, R.A. (2009). Windbreak practices. In: Garrett, H.E. (ed.). North American Agroforestry, an integrated science and practice. 75-104 p. 2nd edition. Madison: American Society of Agronomy.

Brandle, J.R., Wardle, T.D. & Bratton, G.F. (1992). Opportunities to increase tree planting in shelterbelts and the potential impacts on carbon storage and conservation. In: Sampson, R.N. & Dwight, H. (eds). Forests and Global Change, Vol. 1: Opportunities for Increasing Forest Cover. Washington: American Forests. 157-176p.

Burns, R.M. & Barbara H.H. (1990). Silvics of North America: Hardwoods. vol. 2. Washington, DC: Department of Agriculture, Forest Service. 877 p.

Burns, R.M. & Honkala, B.H. (1990). Silvics of North America: Hardwoods. First edition. Washington: Forest Service. 876 p.

Dixon, R.K. (1995). Agroforestry systems: sources or sinks of greenhouse gases?. Agroforestry Systems. 31: 99-16.

Follet, R., Mooney, S., Morgan, J., Paustian, K., Allen, L.H., Archibelgue, S., Baker, J.M., Del Grosso, S.J., Derner, J., Dijkstra, F., Franzlubbers, A.J., Jansen, H., Kurkalova, L.A., McCarl., Ogle, S., Parton, W.J., Rice, C.W., Roberston, G.P., Schoenenberger, M., West, T.O. & Williams, J. (2011). Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities. First edition. Ames, Iowa, USA: Council for Agricultural Science and Technology- CAST-. 106 p.

Jenkins, J.C., Chojnacky, D. C., Heat, L.S. & Birdsey, R.A. (2003). Comprehensive database of diameter-based biomass regressions for North American tree species. United States: Forest service, USDA- United States Department of Agriculture. 48p.

Kort, J. (1988). Benefits of windbreaks to field and forage crops. Agriculture Ecosystems and Environment. 22-23:165-190. doi: http://dx.doi.org/10.1016/0167-8809(88)90017-5

Kort, J. & Turnock, R. (1999). Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforestry Systems. 44:175-189.

Kulshreshtha, S. & Kort, J. (2009). External economic benefits and social goods from prairie shelterbelts. Agroforestry Systems. 75(1): 39-47. doi: https://doi.org/10.1007/s10457-008-9126-5

Nair, P.K.R, Nair, V.D., Kumar B.M. & Showalter, J. (2010). Carbon sequestration in agroforestry systems. Adv. Agron. 108: 237-307. doi: https://doi.org/10.1016/S0065-2113(10)08005-3

Nair, P.K.R. & Nair, V.D. (2003). Carbon Storage in North American agroforestry systems, pp. 333-346. In: Kimble, J.M., Heath, L.S., Birdsey, R.A. & Lal, R. (eds), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton, FL: CRC Press LLC.

Nair, P.K.R. (2011). Agroforestry systems and environmental quality: introduction. J. Environ Qual. 40(3):784-90. doi: 10.2134/jeq2011.0076.

Newman, M.C. (1993). Regression analysis of log‐transformed data: Statistical bias and its correction. Environmental Toxicology and Chemistry. 12:1129-1133. doi: https://doi.org/10.1002/etc.5620120618

Oliver, W.W. & Russell, A.R. (1990). Ponderosa Pine (Pinus ponderosa Dougl. ex Laws.) In: Burns, Russell M., & Barbara H. Silvics of North America. Conifers. vol. 1. Washington: Department of Agriculture, Forest Service. 654 p.

Sauer, T.J., Cambardella, C.A. & Brandle, J.R. (2007) Soil carbon and litter dynamics in a red cedar-scotch pine shelterbelt. Agroforest Syst. 71:163-174

Schoeneberger, M.M. (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agroforest Syst. 75:27-37

Schoeneberger, M.M., Bentrup, G., de Gooijer, H., Soolanayakanahally, R., Sauer, T., Brandle, J., Zhou, X. & Current, D. (2012). Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. Journal of Soil and Water Conservation. 67(5): 128-136.

Tamang, B. Andreou, G.M., Friedman, H.M. & Rockwood, D.L. (2015). Windbreak designs and planting for Florida agricultural fields. Retrieved from http://edis.ifas.ufl.edu/fr289

Tyndall, J. & Colletti, J. (2007). Mitigating swine odor with strategically designed shelterbelt systems: a review. Agroforest Syst. 69:45-65. doi: 10.1007/s10457-006-9017-6

Udawatta, R.P. & Jose, S. (2011). Carbon sequestration potential of agroforestry practices in temperate North America. In: Kumar, B.M. & Nair, P.K.R. (eds.). Carbon sequestration potential of agroforestry systems: opportunities and challenges. pp. 17 -42. First edition. New York, USA: Springer. 307 p.

USDA-FIA - Forest Inventory Analysis. (2019). Forest Inventory and Analysis National Program: FIA Library. Recovered from https://www.fia.fs.fed.us/library/database-documentation/

USDA-FS (Forest Service). (2014). Ecoregions of the United States. Recovered from http://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/

USDA-FS (Forest Service). (2015). Forest Inventory and Analysis National Program: FIA Library. Database documentation. Recovered from http://fia.fs.fed.us/library/database- documentation/

USDA-NRCS - USDA - Natural Resource Conservation Service. (2009). Conservation practice standard: windbreak/shelterbelt establishment (Feet) Code 380. Retrieved from http://efotg.sc.egov.usda.gov/references/public/MN/380mn.pdf

USDA-NRCS, - USDA Natural Resource Conservation Service. (2006). Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific basin. United States: Department of Agriculture Handbook. 296 p.

Zhou, X., Brandle, R.J., Schoeneberger, M.M. & Awada, T.N. (2007). Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: Shelterbelt-grown Russian-olive. Forest Ecological Modelling. 202: 311-323. doi: 10.1016/j.ecolmodel.2006.10.024

Publicado

2019-10-16

Cómo citar

Ballesteros-Possú, W., Brandle, J. R., & Ordóñez, H. R. (2019). Carbon storage potential of windbreaks in the United States. Revista De Ciencias Agrícolas, 36(E), 108–123. https://doi.org/10.22267/rcia.1936E.111