Morph-physiology and development of soybean cultivars under irrigation shift

Autores/as

DOI:

https://doi.org/10.22267/rcia.20234003.217

Palabras clave:

Glycine max, hidric stress , stomata , chlorophyll, dry mass

Resumen

During certain periods of the year, some Brazilian regions impose water restrictions, initiating the growth cycle of the soybean crop. Thus, this work was conducted aiming to evaluate the morphophysiology and development of soybean cultivars under irrigation intervals. The experiment was conduct in January 2021, in a rural property, located in the municipality of Lavínia, state of São Paulo, Brazil. The design was completely randomized, in a 2×5 factorial scheme, with two soybean cultivars, M7110IPro (Monsoy®) and Desafio RR8473RSF (Brasmax®), interacting with the irrigation intervals (i.e., 24 h (Control); 48 h; 72 h, 96 h and 120 h) totalizing 10 treatments. We used four repetitions per treatment, which totalizes 40 plots or pots. Our results revealed that intervals longer than 48 h already negatively influence in morphophysiology of the soybean crop. Intervals of 96 h caused greater negative interferences on plant height (PH); number of leaflets (NL); number of pods (NP); dry mass of aerial part (DMAP) and root (DMR) in the soybean crop when grown in pots. Water stress did not influence the stomatal density of soybean grown in pots. Water stress harms soybean physiological parameters. No soybean cultivar showed tolerance to water stress.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Agostinetto, D.; Ruchel, Q.; Fraga, D.S.; Vargas, A.A.M.; Vargas, L. (2020). Water deficit and plant recovery affect interaction between soybean and slender amaranth. Revista Brasileira de Ciências Agrária. 15(4): 1-9. http://dx.doi.org/10.5039/agraria.v15i4a8132

Almeida, G.M.; Costa, A.C.; Batista, P.F.; Junqueira, V.B.; Rodrigues, A.A.; Santos, E.C.D.; Vieira, D.A.; Oliveira, M.M.; Silva, A.A. (2021). Can light intensity modulate the physiological, anatomical, and reproductive responses of soybean plants to water deficit? Physiologia Plantarum. 172(2): 1301-1320. http://dx.doi.org/10.1111/ppl.13360

Banzatto, D.A.; Kronka, S.N. (2013). Experimentação Agrícola. 4.ed. Jaboticabal: FUNEP. 237p.

Bortoluzzi, M.P.; Heldwein, A.B.; Trentin, R.; Maldaner, I.C.; Silva, J.R. (2020). Risk of Occurrence of Water Deficit in Soybean Cultivated in Lowland Soils. Earth Interactions. 24(4): 1-9. http://dx.doi.org/10.1175/ei-d-19-0029.1

Castro, E.M.; Pereira, F.J.; Paiva, R. (2009). Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: UFLA. 234p.

Cavalcante, W.S.S.; Silva, N.F.; Teixeira, M.B.; Cabral Filho, F.R.; Nascimento, P.E.R.; Corrêa, F.R. (2020). Eficiência dos bioestimulantes no manejo de déficit hídrico na cultura da soja. Irriga. 25(4): 754-763. http://dx.doi.org/10.15809/irriga.2020v25n4p754-763

Chang, F.H.; Troughton, J.H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica. 6: 57–65.

Chater, C.C.C.; Caine, R.S.; Fleming, A.J.; Gray, J.E. (2017). Origins and Evolution of Stomatal Development. Plant Physiology. 174(2): 624-638. http://dx.doi.org/10.1104/pp.17.00183

Das, A.; Eldakak, M.; Paudel, B.; Kim, D.; Hemmati, H.; Basu, C.; Rohila, J.S. (2016). Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean. Biomed Research International. 2016: 1-23. http://dx.doi.org/10.1155/2016/6021047

FAO - Food and Agriculture Organization; UNESCO - Organización de las Naciones Unidas. (1974). Soil map of the world. 1:5.000.000 legend. V.1. Paris: UNESCO.

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. (2020). A Soja em números (safra 2019/2020). https://www.embrapa.br/soja/cultivos/soja1/dados-economicos

Herooty, Y.; Kutiel, P.B.; Yizhaq, H.; Katz, O. (2020). Soil hydraulic properties and water source-sink relations affect plant rings’ formation and sizes under arid conditions. Flora. 270: 1-7. http://dx.doi.org/10.1016/j.flora.2020.151664

Katam, R.; Shokri, S.; Murthy, N.; Singh, S.K.; Suravajhala, P.; Khan, M.N.; Bahmani, M.; Sakata, K.; Reddy, K.R. (2020). Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. Plos One. 15(6): 1-29. http://dx.doi.org/10.1371/journal.pone.0233905

Lavergne, A.; Sandoval, D.; Hare, V.J.; Graven, H.; Prentice, I.C. (2020). Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Global Change Biology. 26(12): 7158-7172. http://dx.doi.org/10.1111/gcb.15364

Lawes, R.A.; Oliver, Y.M.; Huth, N.I. (2019). Optimal Nitrogen Rate Can Be Predicted Using Average Yield and Estimates of Soil Water and Leaf Nitrogen with Infield Experimentation. Agronomy Journal. 111(3): 1155-1164. http://dx.doi.org/10.2134/agronj2018.09.0607

Lisboa, L.A.M.; Cavichioli, J.C.; Vitorino, R.; Figueiredo, P.A.; Viana, R.S. (2021). Nutrient suppression in passion fruit species: an approach to leaf development and morphology. Colloquium Agrariae. 17(3): 89-102. http://dx.doi.org/10.5747/ca.2021.v17.n3.a443

Morando, R.; Silva, A.O.; Carvalho, L.C.; Pinheiro, M.P.M.A. (2014). Déficit hídrico: efeito sobre a cultura da soja. Journal of Agronomic Sciences. 3: 114-129.

Nadal, M.; Roig-Oliver, M.; Bota, J.; Flexas, J. (2020). Leaf age-dependent elastic adjustment and photosynthetic performance under drought stress in Arbutus unedo seedlings. Flora. 271: 1-10. http://dx.doi.org/10.1016/j.flora.2020.151662

Naoe, A.M.L.; Peluzio, J.M.; Campos, L.J.M.; Naoe, L.K.; Silva, R.A. (2020). Co-inoculation with Azospirillum brasilense in soybean cultivars subjected to water déficit. Revista Brasileira de Engenharia Agrícola e Ambiental. 24(2): 89-94. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n2p89-94

Parry, C.; Blonquist Junior, J. M.; Bugbee B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell and Environment. 37: 2508–2520. https://doi.org/10.1111/pce.12324

Rstudio Team. (2019). RStudio: Integrated Development for R. http://www.rstudio.com/

Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. (1996). Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. Campinas: IAC. 285p.

Rockwell, F.E.; Holbrook, N.M. (2017). Leaf Hydraulic Architecture and Stomatal Conductance: a functional perspective. Plant Physiology. 174(4): 1996-2007. http://dx.doi.org/10.1104/pp.17.00303

Rosa, V.R.; Silva, A.A.; Brito, D.S.; Pereira Júnior, J.D.; Silva, C.O.; Dal-Bianco, M.; Oliveira, J.A.; Ribeiro, C. (2020). Drought stress during the reproductive stage of two soybean lines. Pesquisa Agropecuária Brasileira. 55: (1-11). https://doi.org/10.1590/S1678-3921.pab2020.v55.01736

Rui, Y.; Anderson, C.T. (2016). Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis. Plant Physiology. 170(3): 1398-1419. http://dx.doi.org/10.1104/pp.15.01066

Sack, L.; Buckley, T.N. (2016). The Developmental Basis of Stomatal Density and Flux. Plant Physiology.171(4): 2358-2363. http://dx.doi.org/10.1104/pp.16.00476

Sant'Ana, E.V.P; Santos, A.B.; Silveira, P.M. (2010). Adubação nitrogenada na produtividade, leitura SPAD e teor de nitrogênio em folhas de feijoeiro. Pesquisa Agropecuária Tropical. 40(4): 491-496. https://doi.org/10.1590/S1983-40632010000400012

Segatto, F.B.; Bisognin, D.A.; Benedetti, M.; Costa, L.C.; Rampelotto, M.V.; Nicoloso, F.T. (2004). Técnica para o estudo da anatomia da epiderme foliar de batata. Ciência Rural. 5: 1597-1601. http://dx.doi.org/10.1590/s0103-84782004000500042

Silva, J.A.; Santos, P.A.B.; Carvalho, L.G.; Moura, E.G; Andrade, F.R. (2020). Gas exchanges and growth of soybean cultivars submitted to water deficiency. Pesquisa Agropecuária Tropical. 50: 1-9. https://doi.org/10.1590/1983-40632020v5058854

Silva, J.N.; Pereira, L.S.; Sousa, G.D.; Oliveira, G.S.; Jakelaitis, A. (2019). Coexistence of soybean plants and Urochloa spp. under glyphosate and water deficit effects. Científica. 47(1): 36-45. http://dx.doi.org/10.15361/1984-5529.2019v47n1p36-45

Suriadi, A.; Zulhaedar, F.; Nazam, M.; Hipi, A. (2021). Optimal irrigation at various soil types for soybean production. Iop Conference Series: Earth and Environmental Science. 648(1): 1-11. http://dx.doi.org/10.1088/1755-1315/648/1/012081

Taiz, L.; Zeiger, E.; Moller, I.; Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed. 888 p.

Viçosi, K.A.; Ferreira, A.A.S.; Oliveira, L.A.B.; Rodrigues, F. (2017). Estresse hídrico simulado em genótipos de feijão, milho e soja. Journal of Neotropical Agriculture. 4(5): 36-42. http://dx.doi.org/10.32404/rean.v4i5.2194

Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.; Henry, W.B.; Gao, W.; Reddy, K.R. (2019). Physiological assessment of water deficit in soybean using midday leaf water potential and spectral features. Journal of Plant Interactions. 14(1): 533-543. http://dx.doi.org/10.1080/17429145.2019.1662499

Publicado

2023-12-19

Cómo citar

Lisboa, L. A. M., & Menezes, J. V. de S. (2023). Morph-physiology and development of soybean cultivars under irrigation shift. Revista De Ciencias Agrícolas, 40(3), e3217. https://doi.org/10.22267/rcia.20234003.217