contadores
Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Research Article

Vol. 42 Núm. 2 (2025): Revista de Ciencias Agrícolas - segundo cuatrimestre, Mayo - Agosto 2025

Nitrogen rate and seed density in irrigated rice: Blast severity, effects on yield and grain protein

DOI
https://doi.org/10.22267/rcia.20254202.263
Enviado
enero 7, 2025
Publicado
2025-08-27

Resumen

Blast is the most important rice disease worldwide, primarily due to the interaction of climatic and the environment factors nitrogen fertilization management, and sowing densities, all of which favor the disease progression and directly affect productivity. Here, we evaluated the effect of nitrogen (N) rates and seed densities (SD) on the Area Under the Disease Progress Curve (AUCPD) of rice blast, caused by the pathogen Pyricularia grisea,  in rice grown under flood irrigation during the vegetative and reproductive stages, as well as its influence on grain yield and protein content. The experiment, carried out under field conditions, was organized in a randomized complete block design, in a in a 2 x 5 x 4 factorial scheme, with four replications. The results show that high ND and SD favored an increase in the AUDPC of leaf and panicle blast, between the two rice cultivars (BRS A704 and BRS A706 CL) affecting yield and crude protein (CP) content in the grain. However, ND above 140 kg ha-1 led to an increase in yield and protein content for both cultivars, inserted in an area with blast and red rice infestation.

 

Citas

  1. Abdisa Jalata, D.; Gobena Roro, A.; Hunduma Dabalo, A.; Asefa Bebayehu, F.; Woticha, A. T. (2022). Effect of Blended NPSB and Nitrogen Application rates on Growth, Yield, and Yield Components of Bread Wheat (Triticum aestivum L.) at Gitilo Dale Research Site of Wallaga University, Western Ethiopia. Advances in Agriculture. 2022(1): 1706039. https://doi.org/https://doi.org/10.1155/2022/1706039
  2. Agostinetto, D.; Nohatto, M. A.; Tarouco, C. P.; Franco, J. J.; da Rosa, E. F. F. (2018). Physiology of rice and red rice plants in competition for nitrogen. Científica. 46(3): 293-298. https://doi.org/http://dx.doi.org/10.15361/1984-5529.2018v46n3p293-298
  3. Agrawal, G. K.; JWA, N. S.; Iwahashi, H.; Rakwal, R. (2003). Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene. 322: 93–103. https://doi.org/10.1016/j.gene.2003.08.017.
  4. Ahmed, M. S.; Majeed, A.; Attia, K. A.; Javaid, R. A.; Siddique, F.; Farooq, M. S.; Uzair, M.; Yang , S. H.; Abushady, A. M. (2024). Country-wide, multi-location trials of Green Super Rice lines for yield performance and stability analysis using genetic and stability parameters. Scientific Reports. 14: 9416. https://doi.org/https://doi.org/10.1038/s41598-024-55510-x
  5. Barros, M. R. G.; Jumbo, L. O. V.; Rocha, L. C. A.; Sena Fernandes, P. R.; Almeida Oliveira, J. V.; Farias, D. I. O. A.; Rocha, R.N.C.; Oliveira, I.; Giongo, M. Santos, G. R. (2024). Influence of nitrogen fertilization and seed density on rice blast severity in soils with different organic matter contents. Concilium. 24(16): 469-491.
  6. Bationo, A.; Waswa, B.; Abdou, A.; Bado, B. V.; Bonzi, M.; Iwuafor, E.; Kibunja, C.; Kihara, J.; Mucheru, M.; Mugendi, D.; Mugwe, J.; Mwale, C.; Okeyo, J.; Olle, A. Roing, K.; Sedogo, M. (2012). Overview of long term experiments in Africa. In: Bationo, A.; Waswa, B. Kihara, J.; Adolwa, I.; Vanlauwe, B.; Saidou, K. (eds.). Lessons learned from Long-term Soil Fertility Management Experiments in Africa. pp. 1-26. Dordrecht: Springer. 204p. https://doi.org/https://doi.org/10.1007/978-94-007-2938-4_1
  7. Bögelein, R.; Lehmann, M. M.; Thomas, F. M. (2019). Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. New Phytologist. 222(4): 1803-1815. https://doi.org/https://doi.org/10.1111/nph.15735
  8. Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análises de sementes. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
  9. Bregaglio, S.; Titone, P.; Hossard, L.; Mongiano, G.; Savoini, G.; Piatti, F. M.; Paleari, L.; Masseroli, A.; Tamborini, L. (2017). Effects of agro-pedo-meteorological conditions on dynamics of temperate rice blast epidemics and associated yield and milling losses. Field Crops Research. 212: 11-22. https://doi.org/https://doi.org/10.1016/j.fcr.2017.06.022
  10. Chung, H.; Jeong, D. G.; Lee, J. H.; Kang, I. J.; Shim, H.-K.; An, C. J.; Kim, J. Y.; Yang, J. W. (2022). Outbreak of rice blast disease at Yeoju of Korea in 2020. The Plant Pathology Journal. 38(1): 46-51. https://doi.org/https://doi.org/10.5423/PPJ.NT.08.2021.0130
  11. Colombari Filho, J.; Rangel, P.; Breseghello, F.; Fragoso, D.; Cordeiro, A.; Abreu, G.; Pereira, J. (2019). BRS A704: seleção recorrente gera cultivar de arroz irrigado de base genética ampla. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1111822/brs-a704-selecao-recorrente-gera-cultivar-de-arroz-irrigado-de-base-genetica-ampla
  12. Companhia Nacional de Abastecimento-CONAB. (2024). Produção Brasileira de grãos, safra 2024/2025. https://www.conab.gov.br/info-agro/safras/graos
  13. Costa-Neto, G.; Matta, D. H. d.; Fernandes, I. K.; Stone, L. F.; Heinemann, A. B. (2024). Environmental clusters defining breeding zones for tropical irrigated rice in Brazil. Agronomy Journal. 116(3): 931-955. https://doi.org/10.1002/agj2.21481
  14. Counce, P. A.; Keisling, T. C.; Mitchell, A. J. (2000). A uniform, objective, and adaptive system for expressing rice development. Crop Science. 40(2): 436-443. https://doi.org/https://doi.org/10.2135/cropsci2000.402436x
  15. Dawood, A.; Majeed, A.; Naveed, M.; Farooq, S.; Hussain, M. (2023). Interactive effect of different inorganic nitrogen sources and bacteria inoculation on productivity, grain quality, and economic returns of pearl millet (Pennisetum glaucum [L.] R. Br.). Archives of Agronomy and Soil Science. 69(15): 3587-3599. https://doi.org/https://doi.org/10.1080/03650340.2023.2265651
  16. Ding, W.; Xu, X.; He, P.; Zhang, J.; Cui, Z.; Zhou, W. (2020). Estimating regional N application rates for rice in China based on target yield, indigenous N supply, and N loss. Environmental Pollution. 263(B): 114408. https://doi.org/10.1016/j.envpol.2020.114408
  17. Santos, G. R.; Rangel, P. H. N.; Santiago, C. M.; Leão, F. F.; Marra, B. M.; Almeida Junior, D. (2005). Reação a doenças e caracteres agronômicos de genótipos de arroz de várzeas no Estado do Tocantins. Agropecuária Técnica. 26(1): 41-45.
  18. Santos, G. R.; Saboya, L. M. F.; Rangel, P. H. N.; Oliveira Filho, J. d. C. (2002). Resistência de genótipos de arroz a doenças no sul do Estado do Tocantins, Brasil. Bioscience Journal. 18(1): 3-12.
  19. Du, C. Q.; Lin, J. Z.; Dong, L. A.; Liu, C.; Tang, D. Y.; Yan, L.; Chen, M. D.; Liu, S.; Liu, X. M. (2019). Overexpression of an NADP(H)-dependent glutamate dehydrogenase gene, TrGDH from Trichurus improves nitrogen assimilation, growth status and grain weight per plant in rice. Breeding Science. 69(3): 429-438. https://doi.org/https://doi.org/10.1270/jsbbs.19014
  20. Esa, N.; Misman, S. N.; Saad, M. M.; Masarudin, M. F. (2023). Nitrogen, potassium, and silicon fertilization to achieve lower panicle blast severity and improve yield components of rice using response surface methodology. Jurnal Teknologi (Sciences & Engineering). 85(5): 81-91. https://doi.org/https://doi.org/10.11113/jurnalteknologi.v85.18893
  21. FAO. (2024). Crop Prospects and Food Situation – Triannual Global Report. No. 3, November 2024. Rome: FAO. 46p. https://doi.org/10.4060/cd3168en
  22. Faria, L. C.; Silva, F. M.; Souza, M. A. (2020). Efeito das doses de nitrogênio no percentual de grãos inteiros das cultivares BRS Primavera e BRS Sertaneja. Revista Brasileira de Ciência do Solo. 44: 1-10.
  23. Gautam, H. R.; Bhardwaj, M. L.; Kumar, R. (2013). Climate change and its impact on plant diseases. Current Science. 105(12): 1685-1691.
  24. Gilet, T.; Bourouiba, L. (2015). Fluid fragmentation shapes rain-induced foliar disease transmission. Journal of The Royal Society Interface. 12(104): 20141092. https://doi.org/https://doi.org/10.1098/rsif.2014.1092
  25. Gong, Y.; Lei, Y.; Zhang, X.; Yan, B.; Ju, X.; Cheng, X. Y.; Zhang, J. D.; Sun, X. Y.; Xu, H.; Chen, W. F. (2022). Nitrogen rate and plant density interaction enhances grain yield by regulating the grain distribution of secondary branches on the panicle axis and photosynthesis in japonica rice. Photosynthetica. 60(2): 179-189. https://doi.org/https://doi.org/10.32615/ps.2022.002
  26. Hong, S. H.; Tripathi, B. N.; Chung, M. S.; Cho, C.; Lee, S.; Kim, J.; Bai, H.; Bae, H.; Cho, J.; Chung, B. Y.; Lee, S. S. (2018). Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Scientific Reports. 8: 9171. 2018. https://doi.org/10.1038/s41598-018-27459-1
  27. Hoshikawa, K.; Watanabe, K.; Nagano, T.; Kotera, A.; Fujihara, Y. (2018). Determination of patterns of rainfall history creating situations for accurate classification of rain-fed paddy fields with SAR backscatter coefficients. Remote Sensing Applications: Society and Environment. 9: 42-51. https://doi.org/https://doi.org/10.1016/j.rsase.2017.11.004
  28. Huang, M.; Zhang, H.; Zhao, C.; Chen, G.; Zou, Y. (2019). Amino acid content in rice grains is affected by high temperature during the early grain-filling period. Scientific Reports. 9: 2700. https://doi.org/https://doi.org/10.1038/s41598-019-38883-2
  29. Imaizumi, T. (2018). Weedy rice represents an emerging threat to transplanted rice production systems in Japan. Weed Biology and Management. 18(2): 99-102. https://doi.org/https://doi.org/10.1111/wbm.12146
  30. Instituto Nacional de Meteorologia-INMET. Boletim Climatológico Anual. Brasília: 2024. https://portal.inmet.gov.br/boletim-climatologico-anual.
  31. Ishikawa, K.; Kuroda, T.; Hori, T.; Iwata, D.; Matsuzawa, S.; Nakabayashi, J.; Sasaki, A.; Ashizawa, T. (2022). Long-term blast control in high eating quality rice using multilines. Scientific Reports. 12: 14880. https://doi.org/10.1038/s41598-022-19237-x
  32. Kato, K.; Saiki, M.; Kamiya, A.; Ito, Y.; Nishida, K. (2023). Rice grain-weight dependency on carbon and nitrogen isotope fractionation. Food Chemistry Advances. 2: 100188. https://doi.org/10.1016/j.focha.2023.100188
  33. Lampayan, R. M.; Rejesus, R. M.; Singleton, G. R.; Bouman, B. A. M. (2015). Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research. 170: 95-108. https://doi.org/10.1016/j.fcr.2014.10.013
  34. Luo, W.; Chen, M.; Kang, Y.; Li, W.; Li, D.; Cui, Y.; . . . Luo, Y. (2022). Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agricultural Water Management. 260: 107285. https://doi.org/https://doi.org/10.1016/j.agwat.2021.107285
  35. Marschner, H.; George, E.; Römheld, V. (2002). Mineral Nutrition of Higher Plants. 2°ed. San Diego: Academic Press. https://doi.org/10.1016/B978-0-08-057187-4.50005-9
  36. Ng, L. C.; Adila, Z. N.; Hafiz, E. M. S.; Aziz, A.; Ismail, M. R. (2020). Foliar sprayed-silicon to induce defense-releated enzymatic activity against Pyricularia oryzae infection in aerobic rice. Malaysian Applied Biology. 49(4): 213-221. https://doi.org/https://doi.org/10.55230/mabjournal.v49i4.1622
  37. Ogoshi, C.; Carlos, F. S.; Waldow, D.; Miranda, F. F.; Reginato, J. L.; Ulguim, A. (2020). Influence of Blast on the Nutrition and Yield of Irrigated Rice in Southern Brazil. Journal of Soil Science and Plant Nutrition. 20: 1378-1386. https://doi.org/https://doi.org/10.1007/s42729-020-00219-9
  38. Oliveira, L. M.; Marchesan, E.; David, R.; Werle, I. S.; Aramburu, B. B.; Donato, G.; da Silva, A. L.; Costa, I. F. D. (2019). Occurrence of rice blast on and grain quality of irrigated rice fertilized with nitrogen and silicates. Pesquisa Agropecuária Brasileira. 54: e00295. https://doi.org/10.1590/S1678-3921.pab2019.v54.00295
  39. Pereira, R. G.; Silva, G. F.; Oliveira, F. H. T.; Diógenes, T. B. A.; de Medeiros, P. V. Q. (2014). Desempenho agronômico do sorgo granífero adubado con nitrogênio e fósforo no semiárido do rio Grande do Norte. Revista Caatinga. 27(2): 24-36.
  40. Pereira, M. M. A.; Cordeiro, A. C. C.; Smiderle, O. J.; de Medeiros, R. D.; de Souza, L. T. (2020). Doses e manejo de aplicação de nitrogênio para o cultivo de arroz com grãos para culinária japonesa em várzea de Roraima. Research, Society and Development. 9(10): e8689108990. https://doi.org/10.33448/rsd-v9i10.8990
  41. Rodríguez Pedroso, A. T. R.; León, N. P.; Ramírez Arrebato, M. A. R. (2025). Evaluation of resistance to Pyricularia oryzae in rice cultivars (Oryza sativa L.). Avances. 27(2): 213-223.
  42. Prasad, D.; Singh, R.; Tomer, A.; & Singh, R. (2020). Effect of different doses of plant nutrients on sheath blight and phenolic content of rice. International Journal of Current Microbiology and Applied Sciences. 9(7): 4111-4122. https://doi.org/https://doi.org/10.20546/ijcmas.2020.907.484
  43. Rangel, P. H. N.; Colombari-Filho, J. M.; Ferreira, M. E.; Magalhães Júnior, A. M.; Abreu, G. B.; Pereira, J. A.; Cordeiro, A. C. C.; Fragoso, D. B.; Furtini, I.V.; Fagundes, P.R.; Lacerda, M.C.; Santiago, C. M.; Castro, A.P. (2022). Imidazolinone resistance, yield potential and agronomic performance of the irrigated rice cultivar BRS A706 CL. Crop Breeding and Applied Biotechnology. 22(3): e42782237. https://doi.org/10.1590/1984-70332022v22n3c30
  44. Rosero, M. (1983). Sistema de Evaluacõn Estandar par Arroz. 2nd ed. Cali: CIAT. 61p.
  45. Scheuermann, K. K.; Nesi, C. N. (2021). Controle químico de brusone e mancha parda na cultura do arroz irrigado. Summa Phytopathologica. 47(3): 168-172. https://doi.org/https://doi.org/10.1590/0100-5405/251530
  46. Shaner, G.; Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology. 67(8): 1051-1056.
  47. Silva, L. P.; Alves, B. M.; Da Silva, L. S.; Pocojeski, E.; Kaminski, T. A.; Roberto, B. S. (2013). Adubacao nitrogenada sobre rendimento industrial e composicao dos graos de arroz irrigado. Ciência Rural. 43(6): 1128-1133. https://doi.org/https://doi.org/10.1590/S0103-84782013005000055
  48. Silva Neto, Z. G.; Martins Filho, S.; Silveira, L. S.; Carneiro, A. P. S.; Santos, V. S. (2023). Desempenho dos métodos de estimação Genomicos na identificação da resistençã do arroz à brusone. Nativa. 10(4): 466-471. https://doi.org/10.31413/nativa.v10i4.13448
  49. Singh, O.; Bathula, J.; Singh, D. (2019). Rice blast modeling and forecasting. International Journal of Chemical Studies. 7(6): 2788-2799.
  50. Sofiatti, V.; Schuch, L. O. B.; Pinto, J. F.; Cargnin, A.; Leitzke, L. N.; Hölbig, L. D. S. (2006). Efeitos de regulador de crescimento, controle de doenças e densidade de semeadura na qualidade industrial de grãos de arroz. Ciência Rural. 36(2): 418-423. https://doi.org/10.1590/S0103-84782006000200010
  51. Tedesco, J. M.; Gianello, C.; Bissani, C. A.; Bohnem, H.; Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais- Boletim Técnico de Solos. 2. ed. Porto Alegre: Universidade Federal do Rio Grande do Sul. 174 p.
  52. Timsina, A.; Thera, U. K.; Ramasamy, N. (2022). Phenotypic screening of f3 rice (Oryza sativa L.) population resistance associated with sheath blight disease. International Journal of Bio-resource and Stress Management. 13(5): 527-534. https://doi.org/10.23910/1.2022.2877
  53. Toh, S.; Takata, N.; Ando, E.; Toda, Y.; Wang, Y.; Hayashi, Y.; Mitsuda, N.; Nagano, S.; Taniguchi, T.; Kinoshita, T. (2021). Overexpression of plasma membrane H+-ATPase in guard cells enhances light-Induced stomatal opening, photosynthesis, and plant growth in hybrid aspen. Frontiers in Plant Science. 12: 766037. https://doi.org/10.3389/fpls.2021.766037
  54. von Borries, G.; Bassinello, P. Z.; Rios, É. S.; Koakuzu, S. N.; Carvalho, R. N. (2018). Prediction models of rice cooking quality. Cereal Chemistry. 95(1): 158-166. https://doi.org/https://doi.org/10.1002/cche.10017
  55. Wang, Y.; Zhang, P.; Li, M.; Guo, Z.; Ullah, S.; Rui, Y.; Lynch, I. (2020). Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environmental Science: Nano. 7(10): 2930-2940. https://doi.org/10.1039/D0EN00757A
  56. Yang, Y.; Li, N.; Ni, X.; Yu, L.; Yang, Y.; Wang, Q.; Liu, J.; Ye, Y.; Tao, L.; Liu, B.; Wu, Y. (2019). Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields. Journal of Cleaner Production. 244(2): 118745. https://doi.org/10.1016/j.jclepro.2019.118745
  57. Zhang, M.; Tian, Y.; Zhao, M.; Yin, B.; Zhu, Z. (2017). The assessment of nitrate leaching in a rice–wheat rotation system using an improved agronomic practice aimed to increase rice crop yields. Agriculture. Ecosystems & Environment. 241: 100-109. https://doi.org/10.1016/j.agee.2017.03.002
  58. Zhang, Y.; Wang, Y.; Niu, H. (2019). Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Science of The Total Environment. 656: 373-387. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.362
  59. Zhou, C.; Le, J.; Hua, D.; He, T.; Mao, J. (2019). Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments. Measurement. 136: 478-486. https://doi.org/10.1016/j.measurement.2018.12.088
  60. Zhou, P.; Zhang, Z.; Du, L.; Sun, G.; Su, L.; Xiao, Z.; Li, C.; Wang, Z.; Xiao, Z.; Hu, T.; Wang, K.; Ni, F.; Wang, S. (2022). Effect of deep placement of large granular fertilizer on ammonia volatilization, soil nitrogen distribution and rice growth. Agronomy. 12(9): 2066. https://doi.org/10.3390/agronomy12092066
  61. Zhu, H.; Wen, T.; Sun, M.; Ali, I.; Sheteiwy, M. S.; Wahab, A.; Tan, W.; Wen, C. He, X.; Wang, X. (2023). Enhancing rice yield and nitrogen utilization efficiency through optimal planting density and reduced nitrogen rates. Agronomy. 13(5): 1387. https://doi.org/10.3390/agronomy13051387

Descargas

Los datos de descargas todavía no están disponibles.