contadores
Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Research Article

Vol. 42 Núm. 3 (2025): Vol. 42 Núm. 3 (2025): Revista de Ciencias Agrícolas - Septiembre - Diciembre 2025

Soil sealing vulnerability in high-value agricultural land: A multicriteria GIS-based approach

DOI
https://doi.org/10.22267/rcia.20254203.277
Enviado
julio 16, 2025
Publicado
2025-12-22

Resumen

Soil sealing remains an under-addressed threat to agricultural sustainability, particularly in rapidly urbanizing rural-urban interfaces. To address this challenge, a spatially explicit Soil Sealing Vulnerability Index (SSVI) was developed for 126,734.87 hectares of agricultural land in the Guachal and Amaime watersheds (GAWs), Valle del Cauca, Colombia. The SSVI integrates seven spatially referenced biophysical and institutional parameters—terrain slope, parcel size, road proximity, proximity to surface water bodies, agrological soil class, urban growth trends (2000–2024), and municipal land-use designations—using a multi-criteria analysis structured by expert consensus through the Analytic Hierarchy Process. With strong internal consistency, demonstrated by a Consistency Ratio (CR) of 2.51% that confirms the logical stability of expert judgments, the SSVI provides spatial support for decision-making in municipal land-use planning. Independent validation is deferred until sealing datasets become available, using a replicable concordance workflow. Results indicate that 42.54% of the GAWs area presents moderate vulnerability, 19.01% low vulnerability, 1.00% (1,270.1 ha) high vulnerability, and 37.44% corresponds to exclusion zones (e.g., urban cores and protected areas). Importantly, 938.7 ha of environmentally restricted soils and 228.8 ha of Mollisols fall within high-vulnerability zones, highlighting the model’s ability to identify policy-relevant risks. This study introduces the first spatially resolved SSVI tailored to Colombia’s regulatory landscape, demonstrating that vulnerability is more strongly influenced by institutional planning than by natural land constraints. Although technically replicable, effective application requires high-resolution spatial datasets and local expert participation. Integration into municipal planning instruments is essential to translate technical findings into policy action.

Citas

  1. Ajmone-Marsan, F.; Certini, G.; Scalenghe, R. (2016). Describing urban soils through a faceted system ensures more informed decision-making. Land Use Policy. 51: 109–119. https://doi.org/10.1016/j.landusepol.2015.10.025
  2. Andrade, J. F.; Cassman, K. G.; Rattalino Edreira, J. I.; Agus, F.; Bala, A.; Deng, N.; Grassini, P. (2022). Impact of urbanization trends on production of key staple crops. Ambio. 51: 1158–1167. https://doi.org/10.1007/s13280-021-01674-z
  3. Aksoy, E.; Gregor, M.; Schröder, C.; Löhnertz, M.; Louwagie, G. (2017). Assessing and analysing the impact of land take pressures on arable land. Solid Earth. 8(3): 683–695. https://doi.org/10.5194/se-8-683-2017
  4. Artmann, M. (2014). Assessment of soil sealing management responses, strategies, and targets toward ecologically sustainable Urban land use management. Ambio. 43(4): 530–541. https://doi.org/10.1007/s13280-014-0511-1
  5. Artmann, M. (2015). Managing urban soil sealing in Munich and Leipzig (Germany)-From a wicked problem to clumsy solutions. Land Use Policy. 46: 21–37. https://doi.org/10.1016/j.landusepol.2015.02.004
  6. Assennato, F.; Smiraglia, D.; Cavalli, A.; Congedo, L.; Giuliani, C.; Riitano, N.; Strollo, A.; Munafò, M. (2022). The Impact of urbanization on land: A biophysical-based assessment of ecosystem services loss supported by remote sensed indicators. Land. 11(2). https://doi.org/10.3390/land11020236
  7. Assouline, S.; Mualem, Y. (2002). Infiltration during soil sealing: The effect of areal heterogeneity of soil hydraulic properties. Water Resources Research. 38(12): 22-1-22–29. https://doi.org/10.1029/2001wr001168
  8. Beckers, V.; Poelmans, L.; Van Rompaey, A.; Dendoncker, N. (2020). The impact of urbanization on agricultural dynamics: A case study in Belgium. Journal of Land Use Science. 15(5): 626–643. https://doi.org/10.1080/1747423X.2020.1769211
  9. Chen, L.; Sela, S.; Svoray, T.; Assouline, S. (2013). The role of soil-surface sealing, microtopography, and vegetation patches in rainfall-runoff processes in semiarid areas. Water Resources Research. 49(9): 5585–5599. https://doi.org/10.1002/wrcr.20360
  10. Clunes, J.; Valle, S.; Dörner, J.; Martínez, O.; Pinochet, D.; Zúñiga, F.; Blum, W. E. H. (2022). Soil fragility: A concept to ensure a sustainable use of soils. Ecological Indicators. 139. https://doi.org/10.1016/j.ecolind.2022.108969
  11. Croci, E.; Lucchitta, B.; Penati, T. (2021). Valuing ecosystem services at the urban level: A critical review. Sustainability. 13(3): 1129. https://doi.org/10.3390/su13031129
  12. CVC; IGAC. (2023). Levantamiento Semidetallado de Suelos del Departamento del Valle del Cauca Escala 1:25.000. https://ecopedia.cvc.gov.co/suelo/caracteristicas-del-suelo/levantamiento-semidetallado-de-suelos-del-departamento-del-valle
  13. CVC. (2024). Resolución 0100 No. 0600-0459 de 2024. https://www.cvc.gov.co/sites/default/files/2025-01/Resoluci%C3%B3n%200100%20No.%200600-0459%20de%202024%20Se%20expide%20determinantes%20ambientales%20a%20escala%20departamental%20del%20medio%20transformado.pdf
  14. Dadi, W.; Mulegeta, M.; Simie, N. (2022). Urbanization and its effects on income diversification of farming households in Adama district, Ethiopia. Cogent Economics and Finance. 10(1). https://doi.org/10.1080/23322039.2022.2149447
  15. Deasy, C.; Brazier, R. E.; Heathwaite, A. L.; Hodgkinson, R. (2009). Pathways of runoff and sediment transfer in small agricultural catchments. Hydrological Processes. 23(9): 1349–1358. https://doi.org/10.1002/hyp.7257
  16. DANE. (2023). Información sobre el Departamento del Valle del Cauca. https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/pres-ValledelCauca-18jul2023.pdf
  17. Echeverri-Sánchez, A. F.; Urrutia-Cobo, N.; Barona-Ramírez, S. M. (2020). Vulnerabilidad de fuentes hídricas superficiales de la cuenca del río cerrito a la contaminación difusa agrícola. Revista de Investigación Agraria y Ambiental. 11(2): 117–130. https://doi.org/10.22490/21456453.3136
  18. Forkuor, G.; Hounkpatin, O. K. L.; Welp, G.; Thiel, M. (2017). High resolution mapping of soil properties using Remote Sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLOS ONE. 12(1): 1–21. https://doi.org/10.1371/journal.pone.0170478
  19. Gardi, C.; Panagos, P.; Van Liedekerke, M.; Bosco, C.; De Brogniez, D. (2015). Land take and food security: assessment of land take on the agricultural production in Europe. Journal of Environmental Planning and Management. 58(5): 898–912. https://doi.org/10.1080/09640568.2014.899490
  20. Garschagen, M.; Romero-Lankao, P. (2015). Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change. 133(1): 37–52. https://doi.org/10.1007/s10584-013-0812-6
  21. Hastings, F.; Fuentes, I.; Perez-Bidegain, M.; Navas, R.; Gorgoglione, A. (2020). Land-Cover Mapping of Agricultural Areas Using Machine Learning in Google Earth Engine. Lecture Notes in Computer Science. 12252: 721–736. https://doi.org/10.1007/978-3-030-58811-3_52
  22. Hu, W.; Cichota, R.; Beare, M.; Müller, K.; Drewry, J.; Eger, A. (2023). Soil structural vulnerability: Critical review and conceptual development. Geoderma. 430. https://doi.org/10.1016/j.geoderma.2023.116346
  23. Hurni, H.; Giger, M.; Liniger, H.; Mekdaschi Studer, R.; Messerli, P.; Portner, B.; Schwilch, G.; Wolfgramm, B.; Breu, T. (2015). Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability. 15: 25–34. https://doi.org/10.1016/j.cosust.2015.07.009
  24. Kaliszewski, I.; Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications. 54: 155–161. https://doi.org/https://doi.org/10.1016/j.eswa.2016.01.042
  25. Karimi, M.; Nazari, R.; Dutova, D.; Khanbilvardi, R.; Ghandehari, M. (2018). A conceptual framework for environmental risk and social vulnerability assessment in complex urban settings. Urban Climate. 26: 161–173. https://doi.org/10.1016/j.uclim.2018.08.005
  26. McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal. 61(13): 2295–2311. https://doi.org/10.1080/02626667.2015.1128084
  27. Mrubata, K.; Nciizah, A. D.; Wakindiki, I. I. C.; Mudau, F. N. (2024). Effects of rainfall intensity and slope gradient on soil sealing and crusting, erosion, and phosphorus solubilizing bacteria. Scientific African. 23: e02064. https://doi.org/10.1016/j.sciaf.2024.e02064
  28. Mukherjee, N.; Hugé, J.; Sutherland, W. J.; Mcneill, J.; Van Opstal, M.; Dahdouh-Guebas, F.; Koedam, N. (2015). The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods in Ecology and Evolution. 6(9): 1097–1109. https://doi.org/10.1111/2041-210X.12387
  29. O'Riordan, R.; Davies, J.; Stevens, C.; Quinton, J. N. (2021). The effects of sealing on urban soil carbon and nutrients. SOIL. 7(2): 661–675. https://doi.org/10.5194/soil-7-661-2021
  30. Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S. E.; De Marchi, M. (2020). Biotope area factor: An ecological urban index to geovisualize soil sealing in Padua, Italy. Sustainability. 12(1): 150. https://doi.org/10.3390/SU12010150
  31. Pham, K. T.; Lin, T. H. (2023). Effects of urbanisation on ecosystem service values: A case study of Nha Trang, Vietnam. Land Use Policy. 128: 106599. https://doi.org/10.1016/j.landusepol.2023.106599
  32. Piero, M.; Angelo, B.; Antonello, B.; Amedeo, D.; Carlo, D. M.; Michela, I.; Giuliano, L.; Florindo, M. A.; Paolo, P.; Simona, V.; Fabio, T. (2017). Soil sealing: Quantifying impacts on soil functions by a geospatial decision support system. Land Degradation and Development. 28(8): 2513–2526. https://doi.org/10.1002/ldr.2802
  33. Pristeri, G.; Peroni, F.; Pappalardo, S. E.; Codato, D.; Castaldo, A. G.; Masi, A.; De Marchi, M. (2020). Mapping and assessing soil sealing in Padua municipality through biotope area factor index. Sustainability. 12(12): 5167. https://doi.org/10.3390/su12125167
  34. Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research. 61(5): 1101–1118. https://doi.org/10.1287/opre.2013.1197
  35. Seifollahi-Aghmiuni, S.; Kalantari, Z.; Egidi, G.; Gaburova, L.; Salvati, L. (2022). Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio. 51(6): 1446–1458. https://doi.org/10.1007/s13280-022-01701-7
  36. Stevenson, A.; Zhang, Y.; Göçmen, Z. A.; Hartemink, A. E. (2025). Urbanization and sealing of fertile soils: A case study in Wisconsin 2001–2021. Soil Security. 19: 100183. https://doi.org/10.1016/j.soisec.2025.100183
  37. Taherdoost, H. (2023). Analysis of simple additive weighting method (SAW) as a multiattribute decision-making technique: A step-by-step guide. Journal of Management Science & Engineering Research. 6(1): 21–24. https://doi.org/10.30564/jmser.v6i1.5400
  38. Terán-Gómez, V. F.; Buitrago-Ramírez, A. M.; Echeverri-Sánchez, A. F.; Figueroa-Casas, A.; Benavides-Bolaños, J. A. (2025). Integrating AHP and GIS for Sustainable surface water planning: identifying vulnerability to agricultural diffuse pollution in the Guachal River watershed. Sustainability. 17(9): 4130. https://doi.org/10.3390/su17094130
  39. Thomas, I. A.; Jordan, P.; Mellander, P. E.; Fenton, O.; Shine, O.; Ó hUallacháin, D.; Creamer, R.; McDonald, N. T.; Dunlop, P.; Murphy, P. N. C. (2016). Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Science of the Total Environment. 556: 276–290. https://doi.org/10.1016/j.scitotenv.2016.02.183
  40. Tóth, G.; Ivits, E.; Prokop, G.; Gregor, M.; Esteve, J. F.; Agràs, R. M.; Mancosu, E. (2022). impact of soil sealing on soil carbon sequestration, water storage potentials and biomass productivity in functional urban areas of the European Union and the United Kingdom. Land. 11(6): 840. https://doi.org/10.3390/land11060840
  41. Vieillard, C.; Vidal-Beaudet, L.; Dagois, R.; Lothode, M.; Vadepied, F.; Gontier, M.; Schwartz, C.; Ouvrard, S. (2024). Impacts of soil de-sealing practices on urban land-uses, soil functions and ecosystem services in French cities. Geoderma Regional. 38: e00854. https://doi.org/10.1016/j.geodrs.2024.e00854
  42. Wei, Z.; Wu, S.; Yan, X.; Zhou, S. (2014). Density and stability of soil organic carbon beneath impervious surfaces in Urban Areas. PLOS ONE. 9(10): e109380. https://doi.org/10.1371/journal.pone.0109380
  43. Xiao, R.; Su, S.; Zhang, Z.; Qi, J.; Jiang, D.; Wu, J. (2013). Dynamics of soil sealing and soil landscape patterns under rapid urbanization. Catena. 109: 1–12. https://doi.org/10.1016/j.catena.2013.05.004
  44. Yu, W.; Hu, Y.; Cui, B.; Chen, Y.; Wang, X. (2019). The Effects of Pavement Types on Soil Bacterial Communities across Different Depths. International Journal of Environmental Research and Public Health. 16(10): 1805 https://doi.org/10.3390/ijerph16101805
  45. Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. (2018). Soil Matters? A Multivariate Analysis of Socioeconomic Constraints to Urban Expansion in Mediterranean Europe. Ecological Economics. 146: 173–183. https://doi.org/10.1016/j.ecolecon.2017.10.015
  46. Ziem Bonye, S.; Yenglier Yiridomoh, G.; Derbile, E. K. (2021). ‘Urban expansion and agricultural land use change in Ghana: Implications for peri-urban farmer household food security in Wa Municipality.’ International Journal of Urban Sustainable Development. 13(2): 383–399. https://doi.org/10.1080/19463138.2021.1915790

Descargas

Los datos de descargas todavía no están disponibles.