Detection of auxinic compounds in germinating seedlings

Autores

DOI:

https://doi.org/10.22267/rcia.213802.162

Palavras-chave:

Kynurenine, pH, IAA pathway, growth-promoting substances, HPLC

Resumo

Tryptophan (TRP) is a metabolite from which several important metabolic syntheses arise in plants, animals, and humans. In bacteria and fungi, it is a precursor of Indole Acetic acid (IAA) using various metabolic pathways. The objective of this study is the detection of intermediate metabolites in the synthesis of IAA in seeds of several species in the germination process. In the study, seeds of plant species grown in deionized water were placed in order to stimulate germination and samples were taken every 24 hours. High performance liquid chromatography (HPLC) was used for the detection of the compounds. The results show that the pH of the medium is altered and there is no pattern of behavior. Regarding the detected compounds, in addition to TRP, there is indole-3-acetamide (IAM), 3-indoleacetonitrile (IAN), tryptamine (TRM), which are part of the TRP-dependent routes, since they use this amino acid as a precursor. Anthranilic acid (AA) and kynurenine (KYN), which are part of the Independent TRP pathway, were also detected. IAA and TRP were also detected during the germination process of the studied seeds (Sorghum bicolor, T aesativum, Zea mayz, Phaseolus vulgaris, G. hirsutum, Cucurbita maxima). Finally, it was observed that the seeds, due to weight loss, suffer physical wear during the germination process, since there is a difference between the initial dry weight and the weight of the seeds at the end of the study.

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Aguilar-Piedras, J.-J; Xiqui-Vásquez, M.-L; García-García, S.; Baca, B-E. (2008). Producción de ácido Indol-3-acético en Azospirillum. Revista Latinoamericana de Microbiología. 50 (1-2): 29-37.

Ahmad-Zahoor, Ejaz-Ahmad, W.; Rashid-Ahmad; Muhammad-Shahbaz. (2017) Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosphorus application under drought stress. Pakistan Journal of Botanic. 49(1):11-19.

Naser, A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.; Igbal, M.; Lukatkin, S.; Pereira, E.; Duarte, A. (2015). Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research. 22 (6):4099–4121. doi:10.1007/s11356-014-3917-1.

Norio, A.; Wakamura, S.; Yasui, H.; Sadovama, Y.; Kishita, M. (2003). Sexually differentiated functions of female-produced pheromone of the black chafer Holotrichia loochooana loochooana (Sawada) (Coleoptera: Scarabaeidae). Chemoecology 13(4):183–186. doi.org/10.1007/s00049-003-0247-z.

Ávila, M.; Lizarazo, M.; Cortes, F. (2015). Promoción del crecimiento de Baccharis macrantha (Asteraceae) con bacterias solubilizadoras de fosfatos asociados a su rizosfera. Acta Biológica Colombiana. 20(3):121-131. https://doi.org/10.15446/abc.v20n3.44742

Abdulla, B. (2017). Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet, and nutritional supplements. Neuropharmacology. 112 (pt B): 248-263. doi: 10.1016/j.neuropharm.2015.11.015

Berstad, A.; Raa, J.; Valeur, J. (2014). Tryptophan: ‘essential’ for the pathogenesis of irritable bowel syndrome? Scand J of Gastroenterol. 49(12): 1493-1498. doi: 10.3109/00365521.2014.936034

Carpenter, M.; Ridgway, H.; Stringer, A. (2008). Characterization of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics. 53(4):193–205. https://doi.org/10.1007/s00294-007-0175-5

Chang, H-K. Mohseni P: Gerben Zylstra. (2003). Characterization and regulation of the genes for a novel 1,2-Dioxygenase from Burkholderia cepacia. Journal of Bacteriology. 185(19): 5871-5881. doi: 10.1128/JB.185.19.5871-5881.2003

Cook, S. D.; Nichols, D. S.; Smith, J.; Chourey, McAdam, E. L.; Quittenden, L.; Ross, J. J.; (2016). Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images. Plant Physiology. 171 (2):1230-1241. doi:10.1104/pp.16.00454

Domínguez-Domínguez, S. A.; Domínguez-López, A.; González-Huerta, S.; Navarro-Galindo, S. (2007). Cinética de imbibición e isotermas de adsorción de humedad de la semilla de Jamaica (Hibiscus sabdariffa L). Revista Mexicana de Ingeniería Química. 6(3): 309-316.

Duca, D.; Janet, L.; Cheryl, L.; Patten, D. R.; Bernard, R. G. (2014). Indole -3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek. 106 (1):85-125. doi: 10.1007/s10482-013-0095-y

Gao, Y.; Dai, X.; Zheng, Z.; Kasahara, H.; Kamiya, Y.; Chory, J., Baliou, D.; Zhao, Y. (2016). Overexpression of the bacterial tryptophan oxidase RebO effects auxin biosynthesisi anf Arabidopsis development. Science bulletin, Science China Press. 61(11): 859-867. doi: https://doi.org/10.1007/s11434-016-1066-2

Gravel, V.; Antoun, H.; Tweddell, R. J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology Biochemistry. 39: 1968-1977. doi: https://doi.org/10.1016/j.soilbio.2007.02.015

Hamdy, M. S.; Scott, L. S.; Carr, R. H.; Sanders, J. P. M. (2012). A novel photocatalytic conversion of tryptophan to Kynurenine using black light as a light source. Catalysis Letters. 142(3): 338-344. doi: 10.1007/s10562-012-0775-7

Hernández-Mendoza, J. L.; Quiroz-Velásquez, J. D.; Moreno-Medina, V. R.; Mayek-Pérez., N. (2008). Biosíntesis de ácido antranílico y ácido indolacético a partir de triptofano en una cepa de Azospirillum brasilense nativa de Tamaulipas, México. Revista de investigación agropecuaria. 12(1): 57‐67. Corpus ID: 83722904

Hernández, J.; Quiroz, J.; Díaz, A.; García, J.; Bustamante, A.; Gill, H. (2012). Detection of metabolites in Flor de Mayo common beans (Phaseolus vulgaris L.) and their response to inoculation with Trichoderma harzianum. African Journal of Biotechnology. 11(55): 11797-11806. doi: 10.5897/AJB12.116

Hernández-Mendoza J.; Moreno-Medina, V.; Quiroz-Velásquez, J.-D.-C; García-Olivares, J.; Mayek-Pérez, N. (2010). Efecto de diferentes concentraciones de ácido antranílico en el crecimiento del maíz. Revista Colombiana de Biotecnología. 12(1): 57-63.

Heyes, M.; Chen, M.; Major, E.; Saito, K. (1997). Different Kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochemical Journal. 326 (2): 351 – 356. doi: http://dx.doi.org/10.1042/bj3260351.

Ibrahim, A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. 192: 38-46. doi: http://dx.doi.org/10.1016/j.jplph.2015.12.011

Katoh, A.; Kazuya, U.; Mitsuru, A.; Takashi, H. (2006). Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiology. 141(3): 851-857. https://doi.org/10.1104/pp.106.081091.

Kazan, K.; Manners, J. (2009). Linking development to defense: Auxin in plant-pathogen interactions. Trends in Plant Science, 14 (7): 373-382. https://doi.org/10.1016/j.tplants.2009.04.005

Kobayashi, M.; Suzuki, T.; Masuda, M.; Shimizu, S. (1995). Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proceeding of the National Academy of Sciences of the United States of America. 92(3): 714-718. https://doi.org/10.1073/pnas.92.3.714

Korasick, A.; Enders, A.; Strader, C. (2013). Auxin Biosynthesis and storage forms. Journal of Experimental Botany. 64(9): 2541-2555. doi: https://doi.org/10.1093/jxb/ert080

Krishnappa, N.; Shaik, B.; Pradeep, S.; Ummiti, J.; Prasada, R. (2017). Phenolic acid composition, antioxidant and antimicrobial activities of green gram (vigna radiata) exudate, husk, and germinated seed of different stages. Journal of Food Processing and Preservation. 41(6):2-8. doi: https://doi.org/10.1111/jfpp.13273

Lehmann, T. ; Janowitz, T. ; Sánchez, P. ; Alonso, M. ; Trompetter, I. ; Piotrowski, P. (2017). Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development Through Modulation of auxin Biosynthesis in Seedlings. Frontiers in Plants Science. 8(36):1-15. doi:10.3389/fpls.2017.00036

Long,L.; Goreki, J.; Renton,M.;Scott, K.; Colville, L.; Goggin, L.; Commander, E.; Wescott, D.; Cherry, H.; Finch, E. (2015). The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews. 90(1): 31-59. doi: https://doi.org/10.1111/brv.12095

Ludwing, J. (2000). Indole-3-butyric acid in plant growth and development. Plan Growth Regulation. 32(2-3): 219 – 230. doi: https://doi.org/10.1023/A:1010746806891

Mano, Y.; Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. Journal of Experimental Botany. 63(8): 2853–72. doi: https://doi.org/10.1093/jxb/ers091

Mohammad, M.; Smith, L. (2014). Plant hormones and seed germination. Environmental and Experimental Botany. 99: 110-121. doi: https://doi.org/10.1016/j.envexpbot.2013.11.005

Victoria, M.; William, T.; Shahriari, M.; Dawson, J.; Klaus, K. (2017). The Systems Biology of Auxins in Developing Embryos. Trends in Plants Science. 22(3): https://doi.org/10.3354/meps255235

Moore, C.; Shaner, A. (1968). Synthesis of indoleacetic acid from tryptophan via indolepyruvic acid in cell-free extracts of pea seedlings. Archives of Biochemistry and Biophysics. 127(1): https://doi.org/10.1016/0003-9861(68)90269-5

Guillaume, N.; Xiang, Y.; Soppe, W. (2017). The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology. 35:8–14. https://doi.org/10.1016/j.pbi.2016.09.002

Palacios, A.; Gomez, G.; Bashan, Y.; Bashan, L. (2016). Tryptophan, Bthiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiology Ecology. 92(6):1-11. doi: https://doi.org/10.1093/femsec/fiw077

Parthasarathy, A.; Cross, P.J.; Dobson R.C.J.; Adams, L. E.; Michael, Savka, A.; Hudson, A. O. (2018). A three-ring circus: Metabolism of three protogenic aromatic amino acids and their role in the health of plant and animals. Frontiers in Molecular Biosciences. 5(29):1-30. doi: 10.3389/fmolb.2018.00029

Pavlova, A.S.; MR Leontieva, M.R.; Smirnova, T.A.; Kolomeitseva, G.L; Netrusov A.I.; Tsavkelova, E.A. (2017). Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl. Journal of Applied Microbiology. 123(1): 217-232. doi: https://doi.org/10.1111/jam.13481

Pawlak, D.; Tankiewicz, A.; Matys, T.; Buczko, W. (2003). Peripheral distribution of Kynurenine metabolites and activity of Kynurenine pathway enzymes in renal failure. Journal of Physiology and Pharmacology. 54(2), 175-189.

Pérez-Rodríguez, J.L.; Torrecilla-Guerra, G.; Ruiz-Padrón, 0.; Rodríguez-Escriba, R.C.; Lorente González, G.Y.; Martínez-Montero, M.E.; González-Olmedo, J.L. (2016). Efecto de la madurez en la crioconservación de semillas de Nicotina tabacum L. Cultivos Tropicales. 37 (esp):99-105.

Prombunchachai, T.; Nakaew, N.; Chidburee, A.; Sarin, S. (2017). Effect of Methylobacterium radiotolerans ED5-9 with Capability of Producing Indole-3-Acetic Acid (IAA) and 1-Aminocyclopropane-1-Carboxylic Acid Deaminase on the Growth and Development of Murdannia loriformis (Hassk.) Rolla Rao & Kammathy under In Vitro Condition. Naresuan University Journal: Science and Technology (NUJST), 25(2), 21-31.

Quittenden, L. J.; Davies, N. W.; Smith, J. A.; Molesworth, P. P.; Tivendale, N. D.; Ross, J. J. (2009). Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant physiology, 151(3), 1130-1138.

Rosental, L.; Nonogaki, H.; Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed science research, 24(1): 1-15.

Sánchez-Pérez, M., Muñoz-Mejía, C. Y., Quiroz-Velásquez, J. D. C., Mayek-Pérez, N., Hernández-Mendoza, J. L. (2010). Cambios físico-químicos durante la germinación del maíz. Revista Mexicana de Ciencias Agrícolas, 1(1), 89-93.

Shu K.; Xiao-dong L.; Qi X.; Zu-hua H. (2016). Two Faces of One Seed: Hormonal

Regulation of Dormancy and Germination. Molecular Plant. 9(1): 34-45. doi: https://doi.org/10.1016/j.molp.2015.08.010

Singh M.; JM W. (1975). Study of a corn (Zea mays L.) mutant (blue fluorescent-l)

wich accumulates anthranilic acid and its ß-glucoside. Biochemical Genetics. 13(5-6): 357-

Doi: https://doi.org/10.1007/BF00485821

Sipahi H.; Johanna M.-G; Kathrin B.; Mohammad C.; Hasan K.; Harald S.; Ahmet A.; Dietmar F. (2015). Bioactivites of two common polyphenolic compounds: Verbascoside and catechin. Pharmaceutial Biology. 54(4): 712-719. Doi: https://doi.org/10.3109/13880209.2015.1072830

Tabatabaei S.; Ehsanzadeh P.; Etesami H.; Alikhani H.; Glick B. (2016). Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Spanish Journal of Agricultural Research. 14(1): 1-10,

Tsunoda T.; Nicole-M V.-D; (2017). Root chemical traits and their roles in belowground biotic interactions. Pedobiologia. 65: 58-67. Doi: https://doi.org/10.1016/j.pedobi.2017.05.007

Uribe-Bueno M.; Hernández-Mendoza JL.; García Carlos A.; Ancona V.; Larios-Serrato, V. (2020). Independent Tryptophan pathway in Trichoderma asperellum and T koningiopsis: New insights with bioinformatic and molecular analysis. BioRxiv preprint. doi: https://doi.org/10.1101/2020.07.31.230920

Vega-Celedón P.; Hayron-Canchignia M.; González M.; Seeger M. (2016). Biosíntesis de ácido indol-3acetico y promoción del crecimiento de planas por bacterias. Cultivos Tropicales. 37 (1): 33-39.

Wakasa K.; Hasegawa H.; Nemoto H.; Matsuda F.; Miyazawa H.; Tozawa Y.; Morino K.; Komatsu A.; Yamada T.; Terakawa .T.; Miyagawa H. (2006). High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. Journal of Experimental Botany. 57 (12): 3069-3078. DOI: https://doi.org/10.1093/jxb/erl068

Yang Z.; Geng X.; He C.; Zhang F.; Wang R.; Horst W.-J.; Ding Z. (2007). TAA1-Regulated Local Auxin Biosynthesis in the Root-Apex Transition Zone Mediates the Aluminum-Induced Inhibition of Root Growth in Arabidopsis. The Plant Cell. 26(7):2889-2904. Doi: https://doi.org/10.1105/tpc.114.127993

Jipei Y.; Hu X.: Huang J. (2014). Origin of plant auxin biosynthesis. Trends in Plant Science. 19(12):764-770. https://doi.org/10.1016/j.tplants.2014.07.004

Publicado

2021-09-29

Como Citar

Oliva-Hernández, A. A., Quiroz-Velásquez, J. D. C., García-Olivares, J. G., García-León, I., Lizarazo-Ortega, C., & Hernández-Mendoza, J. L. (2021). Detection of auxinic compounds in germinating seedlings. Revista De Ciencias Agrícolas, 38(2), 63–74. https://doi.org/10.22267/rcia.213802.162