Potential of diatomaceous earth as a management tool against Acanthoscelides obtectus infestations

Authors

DOI:

https://doi.org/10.22267/rcia.1936E.105

Keywords:

inert dust, Phaseolus vulgaris, bean weevil control, biorational pest management

Abstract

The weevil Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae: Bruchinae) is a cosmopolitan pest that causes high losses in stored beans in small storage units and especially on-farm storages. Here, it was tested the efficacy of the inert dust diatomaceous earth (DE) as an alternative to control A. obtectus in common beans (i.e., Phaseolus vulgaris L.) on different storage temperatures and exposure intervals. Using a Completely Randomized design four doses (0.25, 0.50, 0.75 and 1.00g kg-1) of diatomaceous earth on beans kept at different temperatures (25, 28, 30, 32 and 35°C). Insect mortality was evaluated after two or five days of exposure. The impacts of diatomaceous earth in the offspring of five days-exposed A. obtectus adults were evaluated. The offspring production (emerged adults) was evaluated 60 days after the exposure. The results revealed that A. obtectus mortality caused by diatomaceous earth was dose, temperature and exposure period dependent. For instance, at the lowest temperature (25°C), diatomaceous earth dose (0.25g kg-1 of beans) and exposure period of two days, the efficacy of diatomaceous earth was significantly reduced when compared to the other treatments. When applied at temperatures above 30°C, the diatomaceous earth treatments always resulted in A. obtectus mortality of at least 90%. Curiously, offspring production (F1) was reduced to over 95% in all diatomaceous earth, temperatures and exposure period treatments. Therefore, the results demonstrated that diatomaceous earth has the potential to be used as a tool to manage A. obtectus infestations in stored beans, considering that such control practice adequately reduced these insect infestations in several possible scenarios.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Athanassiou, C., Vayias, B., Dimizas, C., Kavallieratos, N., Papagregoriou, A. & Buchelos, C.T. (2005). Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.)(Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval. Journal of Stored Products Research. 41(1):47-55. doi: 10.1016/j.jspr.2003.12.001

Athanassiou, C.G, Kavallieratos, N.G, Vayias, B.J, Tomanović, Ž., Petrović, A., Rozman, V., Adler, C., Korunic, Z. & Milovanović, D. (2011). Laboratory evaluation of diatomaceous earth deposits mined from several locations in central and southeastern Europe as potential protectants against coleopteran grain pests. Crop protection 30(3):329-339. doi: 10.1016/j.cropro.2010.10.004

Badii, B.K., Adarkwah, C., Obeng-Ofori, D. & Ulrichs, C. (2014). Efficacy of diatomaceous earth formulations against Callosobruchus maculatus (F.)(Coleoptera: Bruchidae) in Kersting’s groundnut (Macrotyloma geocarpum Harms): influence of dosage rate and relative humidity. Journal of pest science. 87(2):285-294. doi: 10.1007/s10340-013-0548-0

Bjørling-Poulsen, M., Andersen, H.R. & Grandjean, P. (2008). Potential developmental neurotoxicity of pesticides used in Europe. Environmental Health. 7:50. doi: 10.1186/1476-069X-7-50

Bohinc, T., Vayias, B., Bartol, T. & Trdan, S. (2013). Assessment of insecticidal efficacy of diatomaceous earth and powders of common lavender and field horsetail against bean weevil adults. Neotropical entomology. 42(6): 642-648. doi: 10.1007/s13744-013-0168-7

Boyer, S., Zhang, H. & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored-product insects. Bulletin of entomological research. 102(2): 213-229. doi: 10.1017/S0007485311000654

Chen, S., Gu, S., Wang, Y., Yao, Y., Wang, G., Jin, Y. & Wu, Y. (2016). Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China. Environmental pollution 218:1128-1134. doi: 10.1016/j.envpol.2016.08.066

Cook, D.A., Wakefield, M.E. & Bryning, G.P. (2008). The physical action of three diatomaceous earths against the cuticle of the flour mite Acarus siro L.(Acari: Acaridae). Pest Management Science: formerly Pesticide Science. 64:141-146. doi: https://doi.org/10.1002/ps.1484

Dowdy, A.K. (1999). Mortality of red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) exposed to high temperature and diatomaceous earth combinations. Journal of Stored Products Research. 35(2):175-182. doi: https://doi.org/10.1016/S0022-474X(98)00043-5

Fields, P. & Korunic, Z. (2000). The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. Journal of Stored Products Research. 36(1): 1-13. doi: https://doi.org/10.1016/S0022-474X(99)00021-1

Frederick, J.L. & Subramanyam, B. (2016). Influence of temperature and application rate on efficacy of a diatomaceous earth formulation against Tribolium castaneum adults. Journal of Stored Products Research. 69: 86-90. doi: https://doi.org/10.1016/j.jspr.2016.06.009

Freitas, R.S., Faroni, L.R.A. & Sousa, A.H. (2016). Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say). Journal of Stored Products Research. 66: 1-5. doi: https://doi.org/10.1016/j.jspr.2015.12.004

González-Armijos, M.J., Viteri-Jumbo, L.O., Faroni, L.R., Oliveira, E.E., Flores, A.F., Heleno, F.F. & Haddi, K. (2019). Fumigant toxicity of eugenol and its negative effects on biological developmente of Callosobruchus maculatus L. Revista de Ciencias Agrícolas. 36(1):5-15. doi:http://dx.doi.org/10.22267/rcia.193601.94

Haddi, K., Valbon, W.R., Viteri Jumbo, L.O., De Oliveira, L.O., Guedes, R.N.C, & Oliveira E.E. (2018). Diversity and convergence of mechanisms involved in pyrethroid resistance in the stored grain weevils, Sitophilus spp. Scientific Reports. 8: 16361. doi: https://doi.org/10.1038/s41598-018-34513-5

Hnatuszko-Konka, K., Kowalczyk, T., Gerszberg, A., Wiktorek-Smagur, A. & Kononowicz, A.K. (2014). Phaseolus vulgaris - Recalcitrant potential. Biotechnology Advances. 32(7): 1205-1215. doi: https://doi.org/10.1016/j.biotechadv.2014.06.001

Jiménez, J.C, De la Fuente, M., Ordás, B., García Domínguez, L.E. & Malvar, R.A. (2017). Resistance categories to Acanthoscelides obtectus (Coleoptera: Bruchidae) in tepary bean (Phaseolus acutifolius), new sources of resistance for dry bean (Phaseolus vulgaris) breeding. Crop protection. 98:255-266. doi: https://doi.org/10.1016/j.cropro.2017.04.011

Korunic, Z. (1997). Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. Journal of Stored Products Research. 33(3): 219-229. doi: https://doi.org/10.1016/S0022-474X(97)00004-0

Korunic, Z. (2013). Diatomaceous earths: Natural insecticides. Pesticidi i fitomedicina. 28(2):77-95. doi: https://doi.org/10.2298/PIF1302077K

Korunić, Z., Rozman, V., Liška, A. & Lucić, P.J.P.A. (2016). A review of natural insecticides based on diatomaceous earths. 22(1): 10-18. doi: http://dx.doi.org/10.18047/poljo.22.1.2

Mbogo, K., Davis, J. & Myers, J. (2009). Transfer of the arcelin-phytohaemagglutinin-α amylase inhibitor seed protein locus from tepary bean (Phaseolus acutifolius A. Gray) to common bean (P. vulgaris L.). Biotechnology. 8: 285-295. doi: 10.3923/biotech.2009.285.295

Papachristos, D.P. & Stamopoulos, D.C. (2004). Fumigant toxicity of three essential oils on the eggs of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Stored Products Research. 40(5): 517-525. doi: https://doi.org/10.1016/j.jspr.2003.07.002

Pimentel, M.A.G., Faroni, L.R.D.A., Tótola, M.R. & Guedes, R.N.C. (2007). Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Management Science. 63:876-881. doi: https://doi.org/10.1002/ps.1416

Pitura, K. & Arntfield, S.D. (2019). Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats. Food Chemistry. 272:26-32. doi: https://doi.org/10.1016/j.foodchem.2018.07.220.

Prasantha, B.D.R., Reichmuth, Ch. & Büttner, C. (2003). Effect of diatomaceous earths on the reproductivity of Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae); biology, detection and biological control. In: Credlan, P.E., Armitage, D.M., Bell, C.H., Cogan, P.M., Highley, E. (Eds.). Advances in Stored Product Protection. Proceedings of 8th International Working Conference on Stored Product Protection, 22-26 July 2002, York, UK.

Prasantha, B.D.R., Reichmuth, Ch., Hetz, S.K. & Adler, C. (2002). Physiological aspects of diatomaceous earth treated cowpea wevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae); chemical and physical control. In: Credlan, P.E., Armitage, D.M., Bell, C.H., Cogan, P.M., Highley, E. (Eds.), Advances in Stored Product Protection. Proceedings of 8th International Working Conference on Stored Product Protection, 22-26 July 2002, York, UK.

Prasantha, BR., Reichmuth, C., Adler, C. & Felgentreu, D. (2015). Lipid adsorption of diatomaceous earths and increased water permeaility in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say) (Chrysomelidae). Journal of Stored Products Research, 64:36-41. doi: https://doi.org/10.1016/j.jspr.2015.08.003

Radwan, M., Jurewicz, J., Wielgomas, B., Piskunowicz, M., Sobala, W., Radwan, P., Jakubowski, L., Hawuła, W. & Hanke, W. (2015). The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere 128:42-48. doi: https://doi.org/10.1016/j.chemosphere.2014.12.077

Rajashekar, Y., Gunasekaran, N. & Shivanandappa, T. (2010). Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection. Journal of Food Science and Technology 47:310-314. doi: https://doi.org/10.1007/s13197-010-0049-6

Rodríguez-González, Á., Álvarez-García, S., González-López, Ó., Da Silva, F. & Casquero, P.A. (2019). Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects, 10 (5): 151. doi: https://doi.org/10.3390/insects10050151 10:151.

Simmonds, M., Blaney, W. & Birch, A. (1989). Legume seeds: the defences of wild and cultivated species of Phaseolus against attack by bruchid beetles. Annals of Botany 63:177-184. doi: https://doi.org/10.1093/oxfordjournals.aob.a087721

Soares, M.A., Quintela, E.D., Mascarin, G.M. & Arthurs, S.P. (2015). Effect of temperature on the development and feeding behavior of Acanthoscelides obtectus (Chrysomelidae: Bruchinae) on dry bean (Phaseolus vulgaris L.). Journal of Stored Products Research 61:90-96. doi: https://doi.org/10.1016/j.jspr.2014.12.005

Stathers, T., Denniff, M., & Golob, P. (2004). The efficacy and persistence of diatomaceous earths admixed with commodity against four tropical stored product beetle pests. Journal of Stored Products Research 40:113-123. doi: https://doi.org/10.1016/S0022-474X(02)00083-8

Stehle, S. & Schulz, R. (2015). Agricultural insecticides threaten surface waters at the global scale. Proceedings of the National Academy of Sciences 112:5750-5755. doi: https://doi.org/10.1073/pnas.1500232112

Subramanyam, B. & Roesli, R. (2000). Alternatives to pesticides in stored-product IPM. New York: Springer Science & Business Media. 437p.

Szentesi, A. (1976). The Effect of the Amputation of Head Appendages on the Oviposition of the Bean Weevil, Acanthoscelides obtectus Say (Coleoptera: Bruchidae). The Host-Plant in Relation to Insect Behaviour and Reproduction: Springer, 275-281.

Tang, W., Wang, D., Wang, J., Wu, Z., Li, L., Huang, M., Xu, S. & Yan, D. (2018). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere. 191:990-1007. doi: https://doi.org/10.1016/j.chemosphere.2017.10.115

Tapondjou, L., Adler, C., Bouda, H. & Fontem, D. (2002). Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Products Research. 38:395-402. doi: https://doi.org/10.1016/S0022-474X(01)00044-3

Thiéry, D., Jarry, M. & Pouzat, J. (1994). To penetrate or not to penetrate? A behavioral choice by bean beetle first-instar larvae in response to Phaseolus vulgaris seed surface quality. Journal of Chemical Ecology. 20:1867-1875. doi: https://doi.org/10.1007/BF02066228

Viteri-Jumbo, L.O, Haddi, K., Faroni, L.R.D, Heleno, F.F, Pinto, F.G. & Oliveira, E.E. (2018). Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLOS ONE 13:e0207618. 10.1371/journal.pone.0207618

Viteri-Jumbo, L.O., Faroni, L.R.A., Oliveira, E.E., Pimentel, M.A. & Silva, G.N. (2014). Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Industrial Crops and Products 56:27-34. doi: https://doi.org/10.1016/j.indcrop.2014.02.038

Zaugg, I., Magni, C., Panzeri, D., Daminati, M.G., Bollini, R., Benrey, B., Bacher, S. & Sparvoli, F. (2013). QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theoretical and Applied Genetics. 126:647-661. doi: https://doi.org/10.1007/s00122-012-2008-2

Downloads

Additional Files

Published

2019-10-16

How to Cite

Viteri Jumbo, L., Pimentel, M., Oliveira, E. E., Toledo, P., & D’Antonino-Faroni, L. R. (2019). Potential of diatomaceous earth as a management tool against Acanthoscelides obtectus infestations. Revista De Ciencias Agrícolas, 36(E), 42–51. https://doi.org/10.22267/rcia.1936E.105