Chronic effects of fire suppressors on the reproduction of the copepod Nitocra sp.

Autores

DOI:

https://doi.org/10.22267/rcia.1936E.109

Palavras-chave:

ecotoxicology, aquatic organisms, pollutants, surfactants

Resumo

Fire suppressors are widely used in firefighting and their chemical composition may present a mixture of perfluorochlorinated surfactants (PFCs), including the perfluorooctane sulfonate (PFOS) which has been internationally banned due to its classification as a persistent organic pollutant (POP). PFCs have been found in environmental matrices and soft tissues of organisms, but the potential effect of such compounds on marine organisms has been overlooked. Here, it was evaluated whether the chronic exposures (i.e., seven days) to the fire suppressors Ageofoam, Cold Fire, Kidde and Argus could affect the reproduction of the copepod Nitocra sp. The tested concentrations consisted of those recommended on the products’ manuals and those ranging between 0.0001% and 1%. For each compound, the effective concentrations to 50% exposed organisms (EC50) and the lowest observed effect concentrations (LOEC) were estimated. All the fire suppressors exhibited high toxicity, causing fecundity reduction. At the recommended dilutions, 100% lethality occurred for all compounds. The EC50 values ranged from 0.00817% - Ageofoam - to 0.03081% - Argus. The LOECs ranged from 0.001% - Ageofoam - to 0.1% - Argus and Kidde; and were much lower than the concentrations recommended for commercial use. The fire suppressors showed high toxicity to the copepod, reducing the reproduction rates, even in very low concentrations, suggesting that the release of such substances in the estuary caused severe effects to the environment. This assessment provides subsides to the environmental regulation of fire suppressors in Brazil, because these compounds do not have national regulations for their use and disposal.

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Abessa, D.M.S, Carr, R.S., Souza, E.C.P.M., Rachid, B., Zaroni, L.P., Gasparro, M.R., Pinto, Y. A., Bícego, M.C., Hortellani, M.A., Sarkis, J.E.S. & Muniz, P. (2008). Integrative ecotoxicological assessment of contaminated sediments in a complex tropical estuarine system. In: T.N. Hofer (Ed.), Marine Pollution: New Research, (pp.125-159). New York, USA: Nova Science Publishers, Inc.

Ahrens, L. (2011). Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring, 13(1): 20-31. doi: 10.1039/c0em00373e

Araújo-Castro, C., Souza-Santos, L.P., Torreiro, A.G.A., & Garcia, K.S. (2009). Sensitivity of the marine benthic copepod Tisbe biminiensis (Copepoda, Harpacticoida) to potassium dichromate and sediment particle size. Brazilian Journal of oceanography. 57(1): 33-41. doi: http://dx.doi.org/10.1590/S1679-87592009000100004

Azevedo, F.A. & Chasin, A.A.M. (2003). As bases toxicológicas da ecotoxicologia. São Paulo: RiMa Editora. 340p.

Beach, S.A., Newsted, J.L., Coady, K. & Giesy, J.P. (2006). Ecotoxicological evaluation of perfluorooctane sulfonate (PFOS). Reviews of Environmental Contamination and Toxicology. 186: 133-174. doi: https://doi.org/10.1007/0-387-32883-1_5

Benford, D., De Boer, J., Carere, A., Di Domenico, A., Johansson, N., Schrenk, D. & Dellatte, E. (2008). Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA Journal. 653: 1-131. doi: https://doi.org/10.2903/j.efsa.2008.653

Birge, W.J., Black, J.A & Westerman, A.G. (1985). Short‐term fish and amphibian embryo‐larval tests for determining the effects of toxicant stress on early life stages and estimating chronic values for single compounds and complex effluents: Complex mixtures. Environmental Toxicology and Chemistry. 4(6): 807-821. doi: https://doi.org/10.1002/etc.5620040612

Buruaem, L. B., Rosa, P.A., Araujo, G.S., Nicodemo, S.C.T.S., Oporto, V.F., Fonseca, J.R., Cruz, J.V.F., Medeiros, G.F. & Abessa, D.M.S. (2013). Assessment of sediment toxicity from the Areia Branca off-shore harbor and the Potengi river estuary (RN), Northeastern Brazil. Pan-American Journal of Aquatic Sciences. 8(4): 312-326.

Cariello, M. S. (2018). Efeito do naftaleno na microalga marinha Dunaliella tertiolecta, ouriço-do-mar Lytechinus variegatus e no microcrustáceos estuarinos Nitokra sp e Leptocheirus plumulosus Doctoral Thesis, Universidade de São Paulo, Instituto Oceanográfico. São Paulo, SP. 127p. Retrieved from https://www.teses.usp.br/teses/disponiveis/21/21134/tde-10122012-165258/publico/MarianaStefanonCariello.pdf

Cesar, A., Da Silva, S.L, & Ramos Santos, A. (1997). Testes de toxicidade aquática no controle da poluição. São Paulo: Universidade Santa Cecília-UNISANTA Retrieved from https://www.unisanta.br/arquivos/apostilaecotox.pdf

De Paiva Magalhães, D., & Da Silva Ferrao Filho, A. (2008). Ecotoxicology as a tool to monitoring aquatic ecosystems. Oecologia Australis. 12(3): 355-381.

DEHP – Department of Environmental and Heritage Protection. (2016). Environmental Management of Firefighting Foam Policy - Explanatory Notes. Revision 2. Incident Response Unit, DEHP, Queensland Government. Queensland, Australia, 81p.

Minister of Justice at Canada (2000). Canadian Environmental Protection Act, Persistence and Bioaccumulation Regulations - SOR/2000-107. Retrieved from: https://laws-lois.justice.gc.ca/PDF/SOR-2000-107.pdf

GT - CREA /SP. (2015). Estudo de Implementação das Recomendações da “Carta de Santos - 2015”. Retrieved from http://www.abtl.org.br/wp-content/themes/abtl/arquivos/GT%20-%20INC%C3%8ANDIO%20ALEMOA%20-%20RELAT%C3%93RIO%20FINAL%20%20Vers%C3%A3o%20final%2019.07.16.pdf

Hoff, P.T., Campenhout, K.V., Van De Vijver, K., Covaci, A., Bervoets, L., Moens, L., Huyskens, G., Goemans, G., Belpaire, C., Blust, R. & De Coen,W. (2005). Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects. Environmental Pollution. 137: 324-333 doi: https://doi.org/10.1016/J.ENVPOL.2005.01.008

IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. (2016). Ofício 02027.000773/2016-99 ESREG SANTOS/SP/IBAMA. Santos, SP, Brasil: IBAMA. 3p.

Izar, G.M., Morais, L.G., Pereira, C.D.S., Cesar, A., Abessa, D.M.S., Christofoletti, R.A. (2019). Quantitative analysis of pellets on beaches of the São Paulo coast and associated non-ingested ecotoxicological effects on marine organisms. Regional Studies in Marine Science. 29. doi: https://doi.org/10.1016/j.rsma.2019.100705

Lamparelli, M.C., Costa, M.P.D., Prósperi, V.A., Bevilacqua, J.E., Araújo, R.P.D.A., Eysink, G. G.J. & Pompéia, S. (2001). Sistema Estuarino de Santos e São Vicente. 178p. Retrieved from https://cetesb.sp.gov.br/praias/wp-content/uploads/sites/31/2013/11/relatorio.zip

Lewis, M.A. (1992). The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Research. 26(8): 1013-1023. doi: https://doi.org/10.1016/0043-1354(92)90136-R

Lotufo, G.R. & Abessa, D.M.S. (2002). Testes de toxicidade com sedimento total e água intersticial estuarinos utilizando copépodos bentônicos. In: Nascimento, I.A., Sousa, E,C.P.M. & Nipper, M. (orgs). Métodos em ecotoxicologia marinha: aplicações para o Brasil. pp.151-162. São Paulo, SP, Brasil: Artes Gráficas e Industriais.

Luebker, D.J., Hansen, K.J., Bass, N.M, Butenhoff, J.L. & Seacat, A.M. (2002). Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology. 176(3): 175-185. doi: https://doi.org/10.1016/s0300-483x(02)00081-1

Maciel, D.C., Costa, B.V.M., Souza Santos, L.P., Souza, J.R.B., & Zanardi-Lamardo, E. (2015). Avaliação da toxicidade dos sedimentos do sistema estuarino do Rio Capibaribe (Pernambuco, Brasil) utilizando o copépodo bentônico Tisbe biminiensis Volkmann Rocco (1973). Tropical Oceanography. 43(1): 26-37. doi: https://doi.org/10.5914/tropocean.v43i1.5882

Maranho, L.A., Seabra, C.D, Choueri, R.B, Cesar, A., Gusso-Choueri, P.K., Torres, R.J., De Souza Abessa, D.M., Morais, R.D., Mozeto, A.A., DelVallsa, T.A. & Martín-Díazab, M.L. (2012). The application of biochemical responses to assess environmental quality of tropical estuaries: field surveys. Journal of Environmental Monitoring. 14(10): 2608-2615. doi: http://dx.doi.org/10.1039/c2em30465a

Merguizo, R. (2017). Diversidade e sucessão bacteriana em sedimentos contaminados por hidrocarbonetos, derivados e por dispersão de espumas para controle de incêndio (AFFF), no Estuário de Santos–SP. Retrieved from http://hdl.handle.net/11449/148802

Ministério do Meio Ambiente (2015). Plano Nacional de Implementação Brasil. Convenção de Estocolmo. Ministério do Meio Ambiente (MMA).192 p. Retrieved from http://www.mma.gov.br/images/arquivo/80037/Convencao%20de%20Estocolmo/Plano%20de%20Implementacao%20NIP/Plano_NIP_Ingles__impressao_final.pdf

Montagnolli, R. (2015). Incêndios de petróleo e petroquímicos: biorremediação de áreas afetadas. Tese de Doutorado. Universidade Estadual Paulista, Instituto de Biociências de Rio Claro. 267p. Retrieved from http://hdl.handle.net/11449/134062

Moody, C.A. & Field, J.A. (2000). Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environmental Science & Technology, 34(18): 3864-3870. doi: https://doi.org/10.1021/es991359u

Murakami, M., Imamura, E., Shinohara, H., Kiri, K., Muramatsu, Y., Harada, A. & Takada, H. (2008). Occurrence and sources of perfluorinated surfactants in rivers in Japan. Environmental science & technology. 42(17): 6566-6572. doi: http://dx.doi.org/10.1021/es800353

Oakes, K.D., Benskin, J.P., Martin, J.W., Ings, J.S., Heinrichs, J.Y., Dixon, D.G., Servos, M.R. (2010). Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. Aquatic Toxicology, 98(2): 120–129. doi: https://doi.org/10.1016/j.aquatox.2010.02.005

OECD - Organisation for Economic Cooperation and Development. (2007). Validation report of the full life-cycle test with the harpacticoid copepods Nitocra spinipes and Amphiascus tenuiremis and the calanoid copepod Acartia tonsa – phase 1. Series No. 79. Paris, France: OECD.

Parsons, J.R., Saez, M., Dolfing, J. & De Voogt, P. (2008). Biodegradation of perfluorinated compounds. Reviews of Environmental Contamination and Toxicology. 196(1): 53–71. doi: http://dx.doi.org/10.1007/978-0-387-78444-1_2

Perina, F.C., Torres, R.J., Mozeto, A.A., Nascimento, M.R.L. & Abessa, D.M.S. (2018). Sediment quality assessment of the tributaries of the Santos-São Vicente Estuarine System – Brazil Ecotoxicol. Environ. Saf., 13(99–106): 25-38

Post, G.B., Perry, D.C., & Cooper, K.R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environmental research. 116: 93-117. doi: 10.1016/j.envres.2012.03.007

Ramade, F. (1977). Ècotoxicologie. Paris, France: Masson. 205p

Régis, C.G., Souza-Santos, L.P., Yogui, G.T., Moraes, A.S., & Schettini, C.A.F. (2018). Use of Tisbe biminiensis nauplii in ecotoxicological tests and geochemical analyses to assess the sediment quality of a tropical urban estuary in northeastern Brazil. Marine pollution bulletin. 137: 45-55. doi: 10.1016/j.marpolbul.2018.10.011

Rotander, A., Toms, L.M.L., Aylward, L., Kay, M., & Mueller, J.F. (2015). Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environment international. 82: 28-34. doi: https://doi.org/10.1016/j.envint.2015.05.005

Rotundo, M.M., Laranjeira, M.E., Cardoso, G.S., Gama, L.M., Souza, U.P., Ferreira, F.C., Barrella, W., Ramires, M., Clauzet, M. & Petrere Jr, M. (2015). Incêndio na área portuária de Santos (SP): impacto sobre a diversidade de peixes. In: Anais do XII Congresso de Ecologia do Brasil. Retrieved from http://www.seb-ecologia.org.br/revistas/indexar/anais/xiiceb/pdf/392.pdf

Ruppert, E.E., Fox, R.S. & Barnes, R.D. (1996). Zoologia dos invertebrados. 6. Ed. São Paulo: Editor Roca, 1088p

Schultz, M.M., Barofsky, D.F. & Field, J.A. (2003). Fluorinated alkyl surfactants. Environmental Engineering Science. 20(5): 487-501. doi: https://doi.org/10.1089/109287503768335959

Sikder, M., Eudy, E., Chandler, G. T., & Baalousha, M. (2018). Comparative study of dissolved and nanoparticulate Ag effects on the life cycle of an estuarine meiobenthic copepod, Amphiascus tenuiremis. Nanotoxicology. 12(5): 375-389

Siqueira, G.W., Braga, E.S., Mahíques, M.M., & Aprile, F.M. (2006). Determinação da Matéria Orgânica e Razões C/Nec/S em Sedimentos de Fundo do Estuário de Santos-SP/Brasil. Arquivos de Ciências do Mar. 39(1-2): 18-2. doi: https://doi.org/10.32360/acmar.v39i1-2.6153

Silva, S.C., Pusceddu, F.H., Ortega, A.S.B., Abessa, D.M.S., Pereira, C.D.S. & Maranho, L.A. (2019). Aqueous Film-Forming Foams (AFFFs) are very toxic to aquatic microcrustaceans. Water, Air, & Soil Pollution, 230(11): 260. doi: https://doi.org/10.1007/s11270-019-4291-x

Secretaria do Meio Ambiente do Estado de São Paulo. (2013). Zoneamento ecológico-econômico (ZEE)– setor costeiro da Baixada Santista. Retrieved from: http://arquivos.ambiente.sp.gov.br/cpla/2011/05/ZEE_PUBLICACAO.pdf

Smithwick, M., Mabury, S.A., Solomon, K.R., Sonne, C., Martin, J.W., Born, E.W., Dietz, R., Derocher, A.E., Letcher, R.J., Evans, T.J., Gabrielsen, G.W., Nagy, J., Stirling, I., Taylor, M.K. & Muir, D.C.G. (2005). Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environmental science & technology. 39(15): 5517-5523. doi: https://doi.org/10.1021/es048309w

Suja, F., Pramanik, B.K. & Zain, S.M. (2009). Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Science & Technology, 60(6): 1533 – 1544. doi: https://doi.org/10.2166/wst.2009.504

Tao, L., Kannan, K., Kajiwara, N., Costa, M. M., Fillmann, G., Takahashi, S., & Tanabe, S. (2006). Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environmental science & technology. 40(24):7642-7648. doi: https://doi.org/10.1021/es061513u

Toms, L. M., Thompson, J., Rotander, A., Hobson, P., Calafat, A. M., Kato, K., Ye, X., Broomhall, S., Harden, F. & Mueller, J. F. (2014). Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environment international. 71: 74-80. doi: 10.1016/j.envint.2014.05.019

Van de Vijver, K.I., Hoff, P.T., Van Dongen, W., Esmans, E.L., Blust, R. & De Coen, W.M. (2003). Exposure patterns of perfluorooctane sulfonate in aquatic invertebrates from the Western Scheldt estuary and the southern North Sea. Environmental Toxicology and Chemistry. 22: 2037-2041. doi: https://doi.org/10.1897/02-385

Zhang, X., Bao, Z., Fu, X., Hu, C. & Jing, L. (2018). Acute toxicity of aqueous film forming foam (AFFF) to zebrafish (Brachydanio rerio). IOP Conference Series: Earth and Environmental Science, 199: 1755-1315. doi: https://doi.org/10.1088/1755-1315/199/3/032010

Publicado

2019-10-16

Como Citar

Ueda-De-Carvalho, M., Buruaem-Moreira, L., Maranho-Alves, L., & Moledo-de-Souza-Abessa, D. (2019). Chronic effects of fire suppressors on the reproduction of the copepod Nitocra sp. Revista De Ciencias Agrícolas, 36(E), 82–94. https://doi.org/10.22267/rcia.1936E.109