Effect of Storage Conditions on Physicochemical Characteristics and Phenolic Compounds of Eggplant (Solanum melongena L.)

Autores

DOI:

https://doi.org/10.22267/rcia.193602.114

Palavras-chave:

Chilling injury, commercial quality, low density polyethylene (LPDE) bags, vacuum packaging (VPB)

Resumo

High demand for fresh fruit and vegetables requires the implementation of techniques to extend the shelf life of these highly perishable products. A widely used method for this purpose is the refrigeration; however, it is known that most of the vegetables preserved in this way evidence chilling injury signs during storage. Eggplants cv C029 recently harvested were stored at 13°C packed into low-density polyethylene bags either with perforations (PPB), vacuum packaged (VPB), or unpacked during 5, 10, 15 and 20 days to evaluate the effect of chilling on physicochemical characteristics and visual appearance. Unpacked Eggplants presented remarkable chilling injury symptoms, losing its commercial quality before 10d of storage. Fruit stored in VPB showed discoloration affecting visual appearance but maintains the phenolic compounds and avoided pulp and seeds browning. Eggplants packed in PPB showed the best results in this work, preserving overall characteristics during 15d.

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Amanullah, S.; Jahangir, M.; Ikram, R.; Sajid, M.; Abbas, F.; Mallano, A. (2016). Aloe vera coating efficiency on shelf life of eggplants at differential storage temperatures. Journal of Northeast Agricultural University. 23 (4): 15-25. doi: 10.1016/S1006-8104(17)30003-X

AOAC - Association of Official Analytical Chemists. (2005). Official Method of Analysis, 18th ed. Washington, DC: Association of Official Analytical Chemists.

Berk, Z. (2009). Food process engineering and technology, 1st ed. Burlington: Academic Press. 605p.

Cantwell, M.; Suslow, T. (2000). Eggplant: Recommendations for Maintaining Postharvest Quality. Recovered from http://afghanag.ucdavis.edu/a_horticulture/row-crops/eggplant/FS_Veg_Eggplant_Postharvest_UCD_PHTC.pdf

Cao, G.; Sofic, E.; Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine. 22(5): 749-760. doi: 10.1016/S0891-5849(96)00351-6

Concellón, A.; Añón, M.C.; Chaves, A.R. (2004). Characterization and changes in polyphenol oxidase from eggplant fruit (Solanum melongena L.) during storage at low temperature. Food Chemistry. 88(1): 17-24. doi: 10.1016/j.foodchem.2004.01.017

Concellón, A.; Añón, M.C.; Chaves, A.R. (2005). Effect of chilling on ethylene production in eggplant fruit. Food Chemistry. 92: 63-69. doi: 10.1016/j.foodchem.2004.04.048

Concellón, A.; Añón, M.C.; Chaves, A.R. (2007). Effect of low-temperature storage on physical and physiological characteristics of eggplant fruit (Solanum melongena L.) LWT- Food Science and Technology. 40: 389-396. doi: 10.1016/j.lwt.2006.02.004

Concellón, A.; Zaro, M.J.; Chaves, A.R.; Vicente, A.R. (2012). Changes in quality and phenolic antioxidants in dark purple American eggplant (Solanum melongena L. cv. Lucía) as affected by storage at 0°C and 10°C. Postharvest Biology and Technology. 66: 35-41. doi: 10.1016/j.postharvbio.2011.12.003

Das, J.R.; Bhat, S.G.; Gowda, L.R. (1997). Purification and characterization of a polyphenol oxidase from the Kew cultivar of Indian pineapple fruit. Journal of Agricultural and Food Chemistry. 45: 2031-2035. doi: 10.1021/jf9607674

Díaz-Pérez, J.C. (1998). Transpiration rates in eggplant fruit as affected by fruit and calyx size. Postharvest Biology and Technology. 13: 45-49. doi: 10.1016/S0925-5214(97)00078-1

FAO - Food and Agriculture Organization of the United Nations (2017). Production/Yield/ Consumption quantities of Eggplants (aubergines) in World. Recovered from http://www.fao.org/faostat/en/#data/QC

Francis, F. J. (2000). Wiley Encyclopedia of Food Science and Technology. Vol. 1, 2nd ed., USA: Wiley. 2724 p.

García-Salas, P.; Gómez-Caravaca, A.M.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. (2014). Identification and quantification of phenolic compounds in diverse cultivars of eggplant grown in different seasons by high-performance liquid chromatography coupled to diode array detector and electrospray-quadrupole-time of flight-mass spectrometry. Food Research International. 57: 114-122. doi: 10.1016/j.foodres.2014.01.032

Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. (2018). Health benefits and bioactive compounds of eggplant. Food Chemistry. 268: 602-610. doi: 10.1016/j.foodchem.2018.06.093

Huang, H.Y.; Chang, C.K.; Tso, T.K.; Huang, J.J.; Chang, W.W.; Tsai, W.C. (2004). Antioxidant activities of various fruits and vegetables produced in Taiwan. International Journal of Food Science and Nutrition. 55: 423-429. doi: 10.1080/09637480412331324695

Jha, S. N.; Matsuoka, T.; Miyauchi, K. (2002). Surface Gloss and Weight of Eggplant during Storage. Biosystems Engineering. 81 (4): 407-412.

Kader, A. (2002). Biología y tecnología poscosecha: Un panorama. In Kader, A.; Pelayo-Saldivar (Eds.). Tecnología Postcosecha de Cultivos Hortofrutícolas. pp. 43-54. Davis CA: University of California.

Kacperska, A. (1997). Ethylene synthesis and a role in plant responses to different stressors. In: Kanellis, A. K., Chang, C., Klee, H., Bleecker, A. B., Pech, J. C., & Grierson, D. (Eds.). Biology and biotechnology of the plant hormone ethylene. pp. 207-216. Netherlands: Kluwer Academic Publishers. doi: 10.1007/978-94-011-5546-5_27

Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. (2004). Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition. 79: 727–747.

Massolo, J.; Concellón, A.; Chaves, A.; Vicente, A. (2011). 1-Methylcyclopropene (1-MCP) delays senescence, maintains quality and reduces browning of non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biology and Technology. 59: 10–15. doi: 10.1016/j.postharvbio.2010.08.007

Matheis, G.; Belitz, H. (1977). Studies on enzymatic browning of potatoes (Solanum Tuberosum). Lebensmittel-Untersuchung und -Forschung. 163: 191-195.

Mishra, B.B.; Gautam, S.; Sharma, A. (2013). Free phenolics and polyphenol oxidase (PPO): The factors affecting post-cut browning in eggplant (Solanum melongena). Food Chemistry. 139: 105-114. doi: 10.1016/j.foodchem.2013.01.074

Montero-Calderón, M.; Cerdas-Araya, M. (2012). Postharvest physiology and storage. In Siddiq M. (Ed.). Tropical and Subtropical Fruits Postharvest physiology. Processing and Packaging. pp. 17-33. USA: Wiley-Blackwell.

Muñoz-Pina, S.; Ros-Lis, J.; Argüelles, A.; Martínez-Máñez, R.; Andrés, A. (2020). Influence of the functionalisation of mesoporous silica material UVM-7 on polyphenol oxidase enzyme capture and enzymatic browning. Food Chemistry. 310: 125741, 1-8.

Nicolas, J.; Richard‐Forget, F.; Goupy, P.; Amiot, M. J.; Aubert, S. (1994). Enzymatic browning reactions in apple and apple products. Critical Reviews in Food Science and Nutrition. 34 (2): 109-157. doi: 10.1080/10408399409527653

Nisha, P.; Nazar, A.; Jayamurthy. P. (2009). A comparative study on antioxidant activities of different varieties of Solanum melongena L. Food and Chemical Toxicology. 47: 2640-2644. doi: 10.1016/j.fct.2009.07.026

Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A.; Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology. 148: 119-123. doi: 10.1016/S0300-483X(00)00202-X

Pérez-Gilabert, M.; García-Carmona, F. (2000). Characterization of catecholase and cresolase activities of eggplant polyphenol oxidase. Journal of Agricultural and Food Chemistry. 48(3): 695-700. doi: 10.1021/jf990292r

Sakamura, S.; Obata, Y. (1963). Anthocyanase and anthocyanins occurring in eggplant, Solanum melongena L. Agricultural and Biological Chemistry. 27(2): 121-127. doi: 10.1080/00021369.1963.10858070

Singh, R.; Singh, N. (2005). Quality of packaged foods. In J. Han (Ed.), Innovations in Food packaging. pp. 24-44. USA: Elsevier Academic Press.

Stommel, J.R.; Whitaker, B.D. (2003). Phenolic acid content and composition of eggplant fruit in a germplasm core subset. Journal of the American Society for Horticultural Science. 128: 704-710.

Sudheesh, S.; Sandhya, C.; Koshy, A.S.; Vijayalakshmi, N. (1999). Antioxidant activity of flavonoids from Solanum melongena L. Phytotherapy Research. 13: 393-396. doi: 10.1002/(SICI)1099-1573(199908/09)13:5<393::AID-PTR474>3.0.CO;2-8

Sukprasansap, M.; Sridonpai, P.; Phiboonchaiyanan, P.P. (2019). Eggplant fruits protect against DNA damage and mutations. Mutat Res Fund Mol Mech Mutagen. 813: 39-45.

Yamaguchi, S.; Matsumoto, K.; Koyama, M.; Tian, S.; Watanabe, M.; Takahashi, A.; Miyatake, K.; Nakamura, K. (2019). Antihypertensive effects of orally administered eggplant (Solanum melongena) rich in acetylcholine on spontaneously hypertensive rats. Food Chemistry. 276: 376-382. doi: 10.1016/j.foodchem.2018.10.017

Zaro, M.J.; Chaves, A.; Vicente, A.R.; Concellón, A. (2014). Changes in bioactive compounds and response to postharvest storage conditions in purple eggplants as affected by fruit developmental stage. Postharvest Biology and Technology. 96: 110-117. doi: 10.1016/j.postharvbio.2014.05.012

Publicado

2019-12-19

Como Citar

Barragán-López, J. A., Franco-Peñata, A. P., López-Pastén, J., & Pérez-Cervera, C. E. (2019). Effect of Storage Conditions on Physicochemical Characteristics and Phenolic Compounds of Eggplant (Solanum melongena L.). Revista De Ciencias Agrícolas, 36(2), 5–16. https://doi.org/10.22267/rcia.193602.114