Soil properties and storage of organic carbon in the land use pasture and forest

Autores

  • Salomón Alejandro Barrezueta-Unda Universidad Técnica de Machala
  • Kelvin Adrián Velepucha-Cuenca Universidad Técnica de Machala
  • Luis Hurtado-Flores Universidad Técnica de Machala
  • Edwin Edison Jaramillo-Aguilar Universidad Técnica de Machala

DOI:

https://doi.org/10.22267/rcia.193602.116

Palavras-chave:

soil carbon sequestration, bulk density, organic matter, soil texture

Resumo

Soil is probably one of the natural resources most vulnerable to climate change. Composes most of the carbon stock in terrestrial ecosystems. The aims of this study were: to characterize the use of pastureland and native forest in two sites in El Oro province (Ecuador), based on their physical, chemical, and biological properties, and to compare the Soil Organic Carbon (SOC) stock at three depths. For this purpose, plots were established in Brachiaria sp pastures and native forests in the coastal area of Machala, Santa Inés site (SI), and the mountains of Chilla, Cune site (CN). Soil sampling was done at three depths (C1=0-10cm; C2=10-20cm; C3= 20-3 cm). The SI soils showed significance (p-value<0,05) among the stored SOC layers. The highest stored SOC value was for SI forest (C1, 36,30megagrams-Mg C ha-1), in an alkaline pH and clay loam texture. In CN soils, stored COS revealed no significance between layers, and values ranged from 27,64Mg ha-1(C1, CNforest) to 35,01 Mg C ha-1 (C3, CNpasture), in an acidic pH, sandy loam texture and high levels of Fe (761,71-938,34 mg kg-1). Soil properties play an important role in stored SOC levels; therefore, sequestration of SOC must be considered to develop optimal pasture management.

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Álvarez-Solís, J.; Anzueto-Martínez, M. (2004). Actividad microbiana del suelo bajo diferentes sistemas de producción de maíz en los altos de Chiapas, México. Agrociencia. 38(1):13-22.

Baldock, J. (1982). Geología del Ecuador: Boletín de Explicación del Mapa geológico de la República del Ecuador. (IGM, Ed.). Quito: Dirección General de Geología y Minas.

Barré, P.; Durand, H.; Chenu, C.; Meunier, P.; Montagne, D.; Castel, G.; Billioub, D.; Soucémarianadin, L.; Cécillon, L. (2017). Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma. 285(January): 50-56. doi: https://doi.org/10.1016/j.geoderma.2016.09.029

Barrezueta-Unda, S.; Luna-Romero, A.; Barrera-León, J. (2018). Almacenamiento de carbono en varios suelos cultivados con cacao en la provincia El Oro-Ecuador. Revista Agroecosistem. 6(1): 154-161.

Beltran, M.J.; Brutti, L.; Romaniuk, R.; Bacigaluppo, S.; Salvagiotti, F.; Sainz-Rozas, H.; Galantini, J.A. (2016). Calidad de la materia orgánica y disponibilidad de macro y micronutrientes por la inclusión de trigo como cultivo de cobertura. Ciencia del Suelo. 34(1): 67-79.

Blake, G.R. (1965). Bulk density. In: Black, C. A. (Ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. pp. 374-390. Saint Paul: American Society of Agronomy. doi: https://doi.org/10.2134/agronmonogr9.1.c30

Brahma, B.; Pathak, K.; Lal, R.; Kurmi, B.; Das, M.; Nath, P.C.; Nath, A.J.; Das, A.K. (2018). Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degradation y Development. 29(1): 15-25. doi: https://doi.org/10.1002/ldr.2816

Bravo, C.; Ramírez, A.; Marín, H.; Torres, B.; Alemán, R.; Torres, R.; Navarrete, H.; Changoluisa, D. (2017). Factores asociados a la fertilidad del suelo en diferentes usos de la tierra de la Región Amazónica Ecuatoriana. Revista Electronica de Veterinaria. 18(11): 1-6.

Chen, S.; Arrouays, D.; Angers, D.; Martin, M.; Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research. 188: 53-58. doi: https://doi.org/10.1016/j.still.2018.11.001

Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; Zhou, D.; Shangguan, Z.; Huanga, J.; He, J.; Wang, Y.; Sheng, J.; Tang, L.; Li, X.; Dong, M.; Wu, Y.; Wang, Q.; Wang, Z.; Wu, J.; Chapin III, S.; Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences. 115(16): 4027-4032. doi: https://doi.org/10.1073/pnas.1700298114

Crespo, P.; Feyen, J.; Buytaert, W.; Bücker, A.; Breuer, L. (2011). Identifying controls of the rainfall - runoff response of small catchments in the tropical Andes (Ecuador). Journal of Hydrology. 407(1-4): 164-174. doi: https://doi.org/10.1016/j.jhydrol.2011.07.021

De Blécourt, M.; Corre, M.D.; Paudel, E.; Harrison, R.D.; Brumme, R.; Veldkamp, E. (2017). Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales. SOIL. 3(3): 123-137. doi: https://doi.org/10.5194/soil-3-123-2017

De Koning, G.H.J.; Veldkamp, E.; López-Ulloa, M. (2003). Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochemical Cycles. 17(4): 1098. doi: https://doi.org/10.1029/2003GB002099

Don, A., Schumacher, J. & Freibauer, A. (2011). Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Global Change Biology. 17(4): 1658-1670. doi: https://doi.org/10.1111/j.1365-2486.2010.02336.x

FAO - Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2014). Informe nacional: Ecuador. Evaluación de los recursos forestales mundiales 2015. Ecuador: FAO.

FAO - Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2017). Soil organic carbon: The hidden potential. Roma, Italy: Food and Agriculture Organization of the United Nations. doi: https://doi.org/10.1038/nrg2350

Fernández, L.; Zalba, P.; Gómez, M.; Sagardoy, M. (2005). Bacterias solubilizadoras de fosfato inorgámico aisladas de suelos de la region sojera. Ciencia del Suelo. 23(1): 31-37.

García-Cruzatty, L.; Schlatter-Vollmann, J. (2012). Caracterización de suelos a lo largo de un gradiente altitudinal en Ecuador. Revista Brasileira de Ciências Agrárias. 7(3): 456-464. doi: https://doi.org/10.5039/agraria.v7i3a1736

Gebeyehu, G.; Soromessa, T. (2018). Status of soil organic carbon and nitrogen stocks in Koga Watershed Area, Northwest Ethiopia. Agriculture y Food Security. 7(1): 1-10. doi: https://doi.org/10.1186/s40066-018-0162-8

Hamer, U.; Potthast, K.; Burneo, J.I.; Makeschin, F. (2013). Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry. 112(1-3): 495-510. doi: https://doi.org/10.1007/s10533-012-9742-z

Horstman, E.; Ayón, J.; Griscom, H. (2018). Growth, survival, carbon rates for some dry tropical forest trees used in enrichment planting in the Cerro Blanco protected forest on the Ecuadorian coast. Journal of Sustainable Forestry. 37(2): 82-96. doi: https://doi.org/10.1080/10549811.2017.1387153

INEC - Instituto Nacional de Estadística y Censos. (2011). Reporte Estadístico el Sector Agropecuario. Ecuador: INEC.

Jiménez, J.J.; Lal, R. (2006). Mechanisms of C Sequestration in Soils of Latin America. Critical Reviews in Plant Sciences. 25(4): 337–365. doi: https://doi.org/10.1080/0735268060094240

Jiménez, L.S.; Mezquida, E.T.; Benito, M.; Rubio, A. (2007). Transformación de áreas boscosas en pastizales en Zamora-Chinchipe (Ecuador). Sociedad Española de Ciencias Forestales. 70: 65-70.

Lal, R. (2015). Restoring Soil Quality to Mitigate Soil Degradation. Sustainability. 7(5): 5875–5895. doi: https://doi.org/10.3390/su7055875

Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. (2017). Soil organic carbon: The hidden potential. Rome, Italy: Food and Agriculture Organization of the United Nations.

Liang, X.; Erickson, J.E.; Silveira, M.L.; Sollenberger, L.E.; Rowland, D.L. (2016). Tissue chemistry and morphology affect root decomposition of perennial bioenergy grasses on sandy soil in a sub-tropical environment. Bioenergy. 8(5): 1015–1024. doi: https://doi.org/10.1111/gcbb.12315

Liang, X.; Erickson, J.E.; Silveira, M.L.; Sollenberger, L.E.; Rowland, D.L.; Vermerris, W. (2019). Quantifying shoot and root biomass production and soil carbon under perennial bioenergy grasses in a subtropical environment. Biomass and Bioenergy. 128: 105323. doi: https://doi.org/10.1016/j.biombioe.2019.105323

Lorenz, K.; Lal, R. (2018). Carbon Sequestration in Agricultural Ecosystems. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-92318-5

Luna-Romero, A.; Ramírez, I.; Sánchez, C.; Conde, J.; Agurto, L.; Villaseñor, D. (2018). Spatio-temporal distribution of precipitation in the Jubones river basin, Ecuador: 1975-2013. Scientia Agropecuaria. 9(1): 63-70. doi: https://doi.org/10.17268/sci.agropecu.2018.01.07

MAE - Ministerio del Ambiente de Ecuador. (2015). Estadísticas de Patrimonio Natural: Datos de bosque, ecosistemas, especies, carbono y deforestación del Ecuador continental. Recovered from http://www.fao.org/forestry/44292-07669536a0752fc4ce8e9d3066b05a109.pdf

Makeschin, F.; Haubrich, M.; Abiy, M.; Burneo, J.; Klinger, T. (2008). Pasture Management and Natural Soil. In: E. Beck (Ed.), Gradients in a Tropical Mountain Ecosystem of Ecuador. pp. 397 - 408. Berlin: Springer International Publishing.

Marconi, R.; Erraez, M.; Manosalva, C.V. (2018). Impacto de la fertilización mineral y enmiendas sobre Gmelina arborea y Schizolobium parahyba en suelos andesíticos de la Amazonía Ecuatoriana Impact of mineral fertilization and amendments on Gmelina arborea and. Revista Centro Agrícola. 45(4): 49-58.

McGroddy, M.E.; Lerner, A.M.; Burbano, D.V.; Schneider, L.C.; Rudel, T.K. (2015). Carbon Stocks in Silvopastoral Systems: A Study from Four Communities in Southeastern Ecuador. Biotropica. 47(4): 407 - 415. doi: https://doi.org/10.1111/btp.12225

Meyer, R.S.; Cullen, B.R.; Whetton, P.H.; Robertson, F.A.; Eckard, R.J. (2018). Potential impacts of climate change on soil organic carbon and productivity in pastures of southeastern Australia. Agricultural Systems. 167: 34 - 46. doi: https://doi.org/10.1016/j.agsy.2018.08.010

Monroe, P.H.M.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Marques, J.R.B. (2016). Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agriculture, Ecosystems y Environment. 221(1): 99-108. doi: https://doi.org/10.1016/j.agee.2016.01.022

Miretti, M. C., Pilatti, I., Lavado, R. S.; Imhoff, S. D. C. (2012). Historia de uso del suelo y contenido de micronutrientes en Argiudoles del centro de la provincia de Santa Fe (Argentina). Ciencia Del Suelo. 30(1): 67-73.

Moreno, J.; Sevillano, G.; Valverde, O.; Loayza, V.; Haro, R.; Zambrano, J. (2016). Soil from the Coastal Plane. In: Espinosa, J., Moreno, J. & Bernal, G. (Eds.). The Soils of Ecuador. pp. 1-195. Cham, Switzerland: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-20541-0

Munsell Color. (1994). Munsell soil color charts. New Windsor, NY: Kollmorgen Instruments Corporation.

Novara, A.; Minacapilli, M.; Santoro, A.; Rodrigo-comino, J.; Carrubba, A. (2018). Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Science of the Total Environment. 652: 300-306. doi: https://doi.org/10.1016/j.scitotenv.2018.10.247

Olsen, S.; Sommers, L. (1982). Phosphorous. In: Page, A. L. (ed.). Methods of soil analysis part 2, chemical, and microbiological properties. pp. 403-430. Madison: American Society of Agronomy, Soil Science Society of America, Inc.

Ortíz-Maya, J.; Escalante-Espinosa, E.; Fócil-Monterrubio, R.L.; Ramírez-Saad, H.C.; Díaz, I.J. (2017). Dinámica de poblaciones bacterianas y actividad deshidrogenasa durante la biorremediación de suelo recién contaminado e intemperizado con hidrocarburos. Revista Internacional de Contaminacion Ambiental. 33(2): 237-246. doi: https://doi.org/10.20937/RICA.2017.33.02.05

Peregrina, F.; López, D.; Zaballa, O.; Villar, M.T.; González, G. (2010). Calidad de los suelos de viñedo en la Denominación de Ori­gen Rioja: Índice de riesgo de encostramiento (FAO­PNUMA), contenido de carbono orgánico y relación con la fertilidad del suelo. Revista de Ciências Agrárias. 33(1): 338–345

Potthast, K.; Hamer, U.; Makeschin, F. (2012). Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry. 111(1-3): 151-167. doi: https://doi.org/10.1007/s10533-011-9626-7

Priess, J.; De Koning, G.H.; Veldkamp, A. (2001). Assessment of interactions between land-use change and carbon and nutrient fluxes in Ecuador. Agriculture, Ecosystems y Environment. 85(1-3): 269-279. doi: https://doi.org/10.1016/S0167-8809(01)00193-1

Quichimbo, P.; Tenorio, G.; Borja, P.; Cárdenas, I.; Crespo, P.; Célleri, R. (2017). Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso del suelo: páramo de Quimsacocha al sur del Ecuador. Suelos Ecuatoriales. 42(2): 138-153.

Rees, R. M.; Bingham, I.J.; Baddeley, J.A.; Watson, C.A. (2005). The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma. 128(1–2): 130-154. doi: https://doi.org/10.1016/j.geoderma.2004.12.020

Reyna-Bowen, L.; Vera-Montenegro, L.; Reyna, L. (2019). Soil organic carbon concentration and storage under different land uses in the Carrizal-Chone. Applied Sciences. 9(45): 1-9. https://doi.org/10.3390/app9010045

Rhoades, C.C.; Eckert, G.E.; Coleman, D.C. (2000). Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecological Applications. 10(2): 497-505. doi: https://doi.org/10.1890/1051-0761(2000)010[0497:SCDAFA]2.0.CO;2

Salamanca, A.; Khalajabadi, S. (2005). La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera colombiana. Cenicafé. 56(4): 381-397.

Six, J.; Elliott, E.; Paustian, K.; Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal. 62: 1367-1377. doi: https://doi.org/10.2136/sssaj1998.03615995006200050032x

Spracklen, D.V.; Righelato, R. (2016). Carbon storage and sequestration of re-growing montane forests in southern Ecuador. Forest Ecology and Management. 364: 139-144. doi: https://doi.org/10.1016/j.foreco.2016.01.001

SPSS - Statistical Package for the Social Sciences. (2013). SPSS Statistics for Windows. Chicago, IL, USA: IBM Corp.

Takoutsing, B.; Weber, J.C.; Tchoundjeu, Z.; Shepherd, K. (2016). Soil chemical properties dynamics as affected by land-use change in the humid forest zone of Cameroon. Agroforestry Systems. 90(6): 1089-1102. doi: https://doi.org/10.1007/s10457-015-9885-8

Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature. 418(6898): 671-677.

Tischer, A.; Potthast, K.; Hamer, U. (2014). Land ‑ use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia. 175: 375-393. doi: https://doi.org/10.1007/s00442-014-2894-x

Tonucci, R.G.; Nair, V.D.; Ramachandran Nair, P.K.; Garcia, R. (2017). Grass vs. tree origin of soil organic carbon under different land-use systems in the Brazilian Cerrado. Plant and Soil. 419(1–2): 281–292. https://doi.org/10.1007/s11104-017-3347-1

USDA-NRCS. (2014). Soil survey field and laboratory methods manual. Lincoln, Nebraska: USDA-NRCS.

Villaseñor, D.; Chabla, J.; Luna, E. (2015). Caracterización física y clasificación taxonómica de algunos suelos dedicados a la actividad agricola de la provinica del El Oro. Cumbres. 1(2): 28-34.

Walkley, A.; Black, A. (1934). An examination of the determination method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.

Weil, R.; Brady, N. (2017). The nature and properties of soil. Columbus, HO: Pearson. doi: https://doi.org/http://lccn.loc.gov/2016008568

Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Lützow, M.; Marin-spiotta, E.; Wesemael, B.; Rabot, E.; Garcia-Franco, N.; Wollschlager, U.; Vogel, H.; Kögel-knabner, I. (2019). Geoderma Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma. 333: 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026

Wilcke, W.; Yasin, S.; Abramowski, U.; Valarezo, C.; Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science. 53(1): 15-27. doi: https://doi.org/10.1046/j.1365-2389.2002.00411.x

Publicado

2019-12-30

Como Citar

Barrezueta-Unda, S. A., Velepucha-Cuenca, K. A., Hurtado-Flores, L., & Jaramillo-Aguilar, E. E. (2019). Soil properties and storage of organic carbon in the land use pasture and forest. Revista De Ciencias Agrícolas, 36(2), 31–45. https://doi.org/10.22267/rcia.193602.116