contadores
Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Research Article

v. 40 n. 2 (2023): Revista de Ciencias Agrícolas - Mayo - August 2023

Detection of Groundnut ringspot virus carried by Frankliniella sp. on watermelon fields in Brazilian Cerrado

DOI
https://doi.org/10.22267/rcia.20234002.211
Enviado
abril 26, 2022
Publicado
2023-08-31 — Atualizado em 2023-09-20

Resumo

Citrullus lanatus (Thunb.) is an important crop in Brazil and affected by relevant insect vectors, including thrips (Thysanoptera: Thripidae). The present work was focused on evaluating the presence of Groundnut ringspot virus (GRSV) associated with Frankliniella sp. (Thysanoptera: Thripidae) in watermelon, C. lanatus, cultivated in the Brazilian Cerrado biome. Several species of thrips were collected from four commercial crops located in Gurupi, Lagoa da Confusão, Formoso do Araguaia and Porto Nacional counties, all of them belonging to the Brazilian state of Tocantins). The total viral RNA obtained from the thrips was enriched and used to perform ugh RT-PCR. Using specific primers, a 644 bp fragment of the GRSV nucleocapsid was identified in all insect samples, which allowed us to perform a phylogenetic analysis with GRSV sequences described for other geographical regions. The findings demonstrate the wide distribution of the GRSV virus in commercial watermelon crops in the Brazilian Cerrado Biome. The association with Frankliniella sp. is highlighted as one of the most relevant vector pathways in this region of high intensity and advanced agriculture. In addition, phylogenetic analysis demonstrated a close relationship between GRSV sequences from South Africa and Brazil. These findings may contribute to the understanding of GRSV distribution in watermelon crops in different localities of Brazilian Cerrado Biome.

Referências

  1. Aguiar, R.; Martins, A.; Nascimento, V.; Capone, A.; Costa, L.; Campos, F.; Fidelis, R.; Santos, G.; Resende, R.; Nagata, T. (2019). Multiplex RT-PCR identification of five viruses associated with the watermelon crops in the Brazilian Cerrado. African Journal of Microbiology Research. 13(3): 60-69. https://doi.org/10.5897/AJMR2018.8976
  2. Boari, A; Maciel-Zambolim, E.; Lau, D.; Lima, G.; Kitajima, E.; Brommonschenkel, S.; Zerbini, F. (2002). Detection and partial characterization of an isolate of Groundnut ringspot virus in Solanum sessiliflorum. Fitopatologia Brasileira. 27(3): 249-253. https://doi.org/10.1590/S0100-41582002000300002
  3. Breuil, S.; Dottori, C.; Bejerman, N.; Nome, C.; Giolitti, F.; Lenardon, S. (2021a). Orthotospovirus disease epidemic: molecular characterization and incidence in peanut crops. Journal of Plant Pathology. 103: 305-309. https://doi.org/10.1007/s42161-020-00686-0
  4. Breuil, S.; Giudici, A.; Rossa, F.; Baldessari, J.; Bejerman, N.; Giolitti, F.; Lenardon, S. (2021b). Exploring species composition and population dynamics of thrips (Thysanoptera: Thripidae) in peanut crops in Argentina. Phytoparasitica. 49: 785-792. https://doi.org/10.1007/s12600-021-00913-z
  5. Candresse, T.; Filloux, D.; Muhire, B.; Julian, C.; Galzi, S.; Fort, G.; Bernardo, P.; Daugrois, J.; Fernandez, E.; Martin, D.; Varsani, A.; Roumagnac, P. (2014). Appearances can be deceptive: Revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS ONE. 9(7): e102945. https://doi.org/10.1371/journal.pone.0102945
  6. Castresana, J.E.; Puhl, L.E. (2015). Efficacy of different light-emitting diodes (LEDs) attached to yellow sticky cards to capture the whitefly Trialeurodes vaporariorum. Revista de Ciencias Agrícolas. 32(2):88-93.
  7. Castro, M.A.; Martínez, J.W.; Dotor, M.Y. (2016). Evaluación del efecto regulador de Chrysoperla externa sobre mosca blanca Trialeurodes vaporariorum en tomate. Revista De Ciencias Agrícolas. 33(2): 43-54. http://dx.doi.org/10.22267/rcia.163302.51
  8. Ciuffo, M.; Tavella, L.; Pacifico, D.; Masenga, V.; Turina, M. (2008). A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Archives of Virology. 153(11): 2059-2068. https://doi.org/10.1007/s00705-008-0228-1
  9. Davino, S.; Caruso, A.G.; Bertacca, S.; Barone, S.; Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants. 9(11):1615. https://doi.org/10.3390/plants9111615
  10. De Araújo, E.R.; Resende, R.S.; Lima, F.L. (2021). First report of Iris yellow spot orthotospovirus infecting onion in Santa Catarina State, Brazil. Summa Phytopathologica, 47(2). https://doi.org/10.1590/0100-5405/246504
  11. Fontes, M.; Lima, M.; Fonseca, M.; Boiteux, S. (2018). First report of Groundnut ringspot orthotospovirus infecting field pea (Pisum sativum L.) crop in Brazil. Plant disease. 102(2): 457. https://doi.org/10.1094/PDIS-03-17-0420-PDN
  12. Fontes, M.; Silva, G.; Lima, M.; Fonseca, M.; Costa, A.; Silva-Filho, J.; Boiteux, L. (2019a). First report of Groundnut Ringspot Osthotospovirus infecting soybeans in Brazil. Plant Disease. 103(4). https://doi.org/10.1094/PDIS-07-18-1246-PDN
  13. Fontes, M.G.; Cabral, C.S.; Lima, M.F.; Fonseca, M.E.N.; Boiteux, L.S. (2019b). Phenotypic expression and species-specific reaction of Lactuca sativa ´PI 342444` to groundnut ringspot virus (GRSV) and tomato spotted wilt virus (TSWV) isolates. European Journal of Plant Pathology, 155:231-238. https://doi.org/10.1007/s10658-019-01766-3
  14. Fontes, M.G.; Lima, M.F.; Fonseca, M.E.N.; Boiteux, L.S. (2017). First report of Groundnut ringspot orthotospovirus infecting field pea (Pisum sativum L.) crop in Brazil. Plat disease. 102(2). https://doi.org/10.1094/PDIS-03-17-0420-PDN
  15. Gilbertson, R.; Batuman, O.; Webster, C.; Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology. 2 : 67-93. https://doi.org/10.1146/annurev-virology-031413-085410
  16. Gutiérrez, Y. (2020). Multiple mechanisms in which agricultural insects respond to environmental stressors: canalization, plasticity and evolution. Revista de Ciencias Agrícolas. 37(2): 90-99. https://doi.org/10.22267/rcia.203701.129
  17. Herath, V.; Romay, G.; Urrutia, C.; Verchot, J. (2020). Family level phylogenies reveal relationships of plant viruses within the order Bunyavirales. Viruses. 12(9). https://doi.org/10.3390/v12091010
  18. Holkar, S.; Mandal, B.; Reddy, M.; Jain. R. (2019). Watermelon bud necrosis orthotospovirus – An emerging constraint in the Indian subcontinent: An overview. Crop Protection. 117: 552-62. https://doi.org/10.1016/j.cropro.2018.11.005
  19. IBGE - Instituto Brasileiro de Geografia e Estatística. (2020). Produção agrícola – Lavoura temporária. https://cidades.ibge.gov.br/brasil/to/pesquisa/14/10340?ano=2020
  20. Kil, E.J.; Vo, T.T.B.; Fadhila, C.; Ho, P.T.; Lal, A.; Troiano, E.; Parrella, G.; Lee, S. (2020). Seed Transmission of Tomato Leaf Curl New Delhi Virus from Zucchini Squash in Italy. Plants, 9(5): 563. https://doi.org/10.3390/plants9050563
  21. Leão, E.; Spadotti, D.; Roccha, K.; Pantoja, K.; Rezende, J.; Pavan, M.; Krause-Sakate, R. (2014). Citrullus lanutus is a new natural host of Groundnut ringspot virus in Brazil. Journal of Phytopatholy. 163(11-12): 1014-1018. https://doi.org/10.1111/jph.12327
  22. Lima, E.; Monteira, R.; Zucchi, R. (2013). Thrips species (Insecta: Thysanoptera) associated to Fabaceae of agricultural importance in Cerrado and Amazon-Caatinga ecotone from Brazilian Mid-North. Biota Neotrópica. 13(2): 283-289. https://doi.org/10.1590/S1676-06032013000200027
  23. Macedo, M.A.; Inoue-Nagata, A.K.; Silva, T.N.Z.; Freitas, D.M.S., Rezende, J.A.M.; Barbosa, J.C.; Michereff-Filho, M.; Nascimento, A.R.; Lourencao, A.L.; Bergamin Filho, A. (2018). Temporal and spatial progress of the disease caused by the crinivirus tomato chlorosis virus and the begomovirus tomato severe rugose virus in tomatoes in Brazil. Plant Pathology, 68(1):72-84. https://doi.org/10.1111/ppa.12920
  24. Maeda, M.; Koyama, L.; Campos, R.; Kauffman, C.; Souza, J.; Gilbertson, R.; Inoue-Nagata, A.; Freitas, D.; Nogueira, D.; Melo, F.; Nagata, T. (2021). First report of watermelon crinkle leaf-associated virus 1 and 2 infecting watermelon (Citrullus lanatus) plants in Brazil. Plant disease. 106(2): 773. https://doi.org/10.1094/PDIS-06-21-1325-PDN
  25. Michelotto, M.D.; Carrega, W.C.; Lamana, L.E.P.; de Souza, T.M.; de Godoy, I.J.; dos Reis, L.N.A.; Sales, A.L.M.; Carvalho, R.C.P. (2019). Losses caused by Groundbut ringspot tospovirus in penut crop in the state of São Paulo. Semina: Ciências Agrárias, 40(6): 3429-3442. 10.5433/1679-0359.2019v40n6Supl3p3429
  26. Mou, D.F.; Chen, W.T.; Li W-H.; Chen, T.C.; Tseng, C.H.; Huang, L.H.; Peng, J.C.; Yeh, S-D.; Tsai, C-W. (2021). Transmission mode of watermelon silver mottle virus by Thrips palmi. PLoS ONE. 16(3): e0247500. https://doi.org/10.1371/journal.pone.0247500
  27. Nagata, T.; Almeida, A.; Resende, R.; de Ávila, A. (2004). The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology. 53(2): 136-140. https://doi.org/10.1111/j.0032-0862.2004.00984.x
  28. Pietersen, G.; Morris, J. (2002). Natural occurrence of Groundnut ringspot virus on Soybean in South Africa. Plant Disease. 86(11): 1271. https://doi.org/10.1094/PDIS.2002.86.11.1271C
  29. Pozzi, E.; Luciani, C.; Celli, M.; Conci, V.; Perotto, M. (2021). Citrullus lanatus: un nuevo hospedante natural del Groundnut ringspot orthotospovirus en Argentina. Agriscientia. 38(1):71-78. http://dx.doi.org/10.31047/1668.298x.v38.n1.26732
  30. Queiroz, A.; Alves, G.; Portella, A.; Santos, G.; Nascimento, I.; Didonet, J.; Lima, E.; Aguiar, R. (2016). Thrips species (Thysanoptera: thripidae) associated with watermelon crops in Central Brazil. International Journal of Current Research. 8(11): 42107-42111.
  31. Rotenberg, D.; Whitfield, A. (2018). Molecular interactions between tospoviruses and thrips vectors. Current Opinion in Virology, 33: 191-197. https://doi.org/10.1016/j.coviro.2018.11.007
  32. Santos, J.; Sarmento, R.; Pereira, P.; Noleto, L.; Reis, H.; Pires, W.; Peluzio, J.; Medeiros, J., Santos, A.; Picanço, M. (2021). Assessing the temporal dynamics of Frankliniella schultzei (Thysanoptera: Thripidae) in commercial soybean crops in North Brazil. Agricultural and Forest Entomology. 24(1): 97-103. https://doi.org/10.1111/afe.12471
  33. Sarwar, M. (2020). Chapter 27: Insects as transport devices of plant viruses. In: Awasthi, L. Applied Plant Virology. pp. 381-402. 1st edition. Londres: Academic Press. 682p. https://doi.org/10.1016/B978-0-12-818654-1.00027-X
  34. Waquil, J.; Teetes, G.; Peterson, G. (1986). Adult sorghum midge contained sorghicola díptera cecidomyiidae nonpreference for a resistant hybrid sorghum bicolor. Journal of Economic Entomology. 79(2): 455-458.
  35. Zarzynska-Nowak, A.; Hasiów-Jaroszewska, B.; Korbecka-Glinka, G.; Przybys, M.; Borodynko-Filas, N. (2018). A multiplex RT-PCR assay for simultaneous detection of Tomato spotted wilt virus and Tomato yellow ring virus in tomato plants. Canadian Journal of Plant Pathology. 40(4): 580-586. https://doi.org/10.1080/07060661.2018.1503195

Downloads

Não há dados estatísticos.