Detection of Groundnut ringspot virus carried by Frankliniella sp. on watermelon fields in Brazilian Cerrado

Autores

DOI:

https://doi.org/10.22267/rcia.20234002.211

Palavras-chave:

Insect vector, Orthotospovirus, RT-PCR, Thysanoptera, viral RNA

Resumo

Citrullus lanatus (Thunb.) is an important crop in Brazil and affected by relevant insect vectors, including thrips (Thysanoptera: Thripidae). The present work was focused on evaluating the presence of Groundnut ringspot virus (GRSV) associated with Frankliniella sp. (Thysanoptera: Thripidae) in watermelon, C. lanatus, cultivated in the Brazilian Cerrado biome. Several species of thrips were collected from four commercial crops located in Gurupi, Lagoa da Confusão, Formoso do Araguaia and Porto Nacional counties, all of them belonging to the Brazilian state of Tocantins). The total viral RNA obtained from the thrips was enriched and used to perform ugh RT-PCR. Using specific primers, a 644 bp fragment of the GRSV nucleocapsid was identified in all insect samples, which allowed us to perform a phylogenetic analysis with GRSV sequences described for other geographical regions. The findings demonstrate the wide distribution of the GRSV virus in commercial watermelon crops in the Brazilian Cerrado Biome. The association with Frankliniella sp. is highlighted as one of the most relevant vector pathways in this region of high intensity and advanced agriculture. In addition, phylogenetic analysis demonstrated a close relationship between GRSV sequences from South Africa and Brazil. These findings may contribute to the understanding of GRSV distribution in watermelon crops in different localities of Brazilian Cerrado Biome.

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Aguiar, R.; Martins, A.; Nascimento, V.; Capone, A.; Costa, L.; Campos, F.; Fidelis, R.; Santos, G.; Resende, R.; Nagata, T. (2019). Multiplex RT-PCR identification of five viruses associated with the watermelon crops in the Brazilian Cerrado. African Journal of Microbiology Research. 13(3): 60-69. https://doi.org/10.5897/AJMR2018.8976

Boari, A; Maciel-Zambolim, E.; Lau, D.; Lima, G.; Kitajima, E.; Brommonschenkel, S.; Zerbini, F. (2002). Detection and partial characterization of an isolate of Groundnut ringspot virus in Solanum sessiliflorum. Fitopatologia Brasileira. 27(3): 249-253. https://doi.org/10.1590/S0100-41582002000300002

Breuil, S.; Dottori, C.; Bejerman, N.; Nome, C.; Giolitti, F.; Lenardon, S. (2021a). Orthotospovirus disease epidemic: molecular characterization and incidence in peanut crops. Journal of Plant Pathology. 103: 305-309. https://doi.org/10.1007/s42161-020-00686-0

Breuil, S.; Giudici, A.; Rossa, F.; Baldessari, J.; Bejerman, N.; Giolitti, F.; Lenardon, S. (2021b). Exploring species composition and population dynamics of thrips (Thysanoptera: Thripidae) in peanut crops in Argentina. Phytoparasitica. 49: 785-792. https://doi.org/10.1007/s12600-021-00913-z

Candresse, T.; Filloux, D.; Muhire, B.; Julian, C.; Galzi, S.; Fort, G.; Bernardo, P.; Daugrois, J.; Fernandez, E.; Martin, D.; Varsani, A.; Roumagnac, P. (2014). Appearances can be deceptive: Revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS ONE. 9(7): e102945. https://doi.org/10.1371/journal.pone.0102945

Castresana, J.E.; Puhl, L.E. (2015). Efficacy of different light-emitting diodes (LEDs) attached to yellow sticky cards to capture the whitefly Trialeurodes vaporariorum. Revista de Ciencias Agrícolas. 32(2):88-93.

Castro, M.A.; Martínez, J.W.; Dotor, M.Y. (2016). Evaluación del efecto regulador de Chrysoperla externa sobre mosca blanca Trialeurodes vaporariorum en tomate. Revista De Ciencias Agrícolas. 33(2): 43-54. http://dx.doi.org/10.22267/rcia.163302.51

Ciuffo, M.; Tavella, L.; Pacifico, D.; Masenga, V.; Turina, M. (2008). A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Archives of Virology. 153(11): 2059-2068. https://doi.org/10.1007/s00705-008-0228-1

Davino, S.; Caruso, A.G.; Bertacca, S.; Barone, S.; Panno, S. (2020). Tomato Brown Rugose Fruit Virus: Seed Transmission Rate and Efficacy of Different Seed Disinfection Treatments. Plants. 9(11):1615. https://doi.org/10.3390/plants9111615

De Araújo, E.R.; Resende, R.S.; Lima, F.L. (2021). First report of Iris yellow spot orthotospovirus infecting onion in Santa Catarina State, Brazil. Summa Phytopathologica, 47(2). https://doi.org/10.1590/0100-5405/246504

Fontes, M.; Lima, M.; Fonseca, M.; Boiteux, S. (2018). First report of Groundnut ringspot orthotospovirus infecting field pea (Pisum sativum L.) crop in Brazil. Plant disease. 102(2): 457. https://doi.org/10.1094/PDIS-03-17-0420-PDN

Fontes, M.; Silva, G.; Lima, M.; Fonseca, M.; Costa, A.; Silva-Filho, J.; Boiteux, L. (2019a). First report of Groundnut Ringspot Osthotospovirus infecting soybeans in Brazil. Plant Disease. 103(4). https://doi.org/10.1094/PDIS-07-18-1246-PDN

Fontes, M.G.; Cabral, C.S.; Lima, M.F.; Fonseca, M.E.N.; Boiteux, L.S. (2019b). Phenotypic expression and species-specific reaction of Lactuca sativa ´PI 342444` to groundnut ringspot virus (GRSV) and tomato spotted wilt virus (TSWV) isolates. European Journal of Plant Pathology, 155:231-238. https://doi.org/10.1007/s10658-019-01766-3

Fontes, M.G.; Lima, M.F.; Fonseca, M.E.N.; Boiteux, L.S. (2017). First report of Groundnut ringspot orthotospovirus infecting field pea (Pisum sativum L.) crop in Brazil. Plat disease. 102(2). https://doi.org/10.1094/PDIS-03-17-0420-PDN

Gilbertson, R.; Batuman, O.; Webster, C.; Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology. 2 : 67-93. https://doi.org/10.1146/annurev-virology-031413-085410

Gutiérrez, Y. (2020). Multiple mechanisms in which agricultural insects respond to environmental stressors: canalization, plasticity and evolution. Revista de Ciencias Agrícolas. 37(2): 90-99. https://doi.org/10.22267/rcia.203701.129

Herath, V.; Romay, G.; Urrutia, C.; Verchot, J. (2020). Family level phylogenies reveal relationships of plant viruses within the order Bunyavirales. Viruses. 12(9). https://doi.org/10.3390/v12091010

Holkar, S.; Mandal, B.; Reddy, M.; Jain. R. (2019). Watermelon bud necrosis orthotospovirus – An emerging constraint in the Indian subcontinent: An overview. Crop Protection. 117: 552-62. https://doi.org/10.1016/j.cropro.2018.11.005

IBGE - Instituto Brasileiro de Geografia e Estatística. (2020). Produção agrícola – Lavoura temporária. https://cidades.ibge.gov.br/brasil/to/pesquisa/14/10340?ano=2020

Kil, E.J.; Vo, T.T.B.; Fadhila, C.; Ho, P.T.; Lal, A.; Troiano, E.; Parrella, G.; Lee, S. (2020). Seed Transmission of Tomato Leaf Curl New Delhi Virus from Zucchini Squash in Italy. Plants, 9(5): 563. https://doi.org/10.3390/plants9050563

Leão, E.; Spadotti, D.; Roccha, K.; Pantoja, K.; Rezende, J.; Pavan, M.; Krause-Sakate, R. (2014). Citrullus lanutus is a new natural host of Groundnut ringspot virus in Brazil. Journal of Phytopatholy. 163(11-12): 1014-1018. https://doi.org/10.1111/jph.12327

Lima, E.; Monteira, R.; Zucchi, R. (2013). Thrips species (Insecta: Thysanoptera) associated to Fabaceae of agricultural importance in Cerrado and Amazon-Caatinga ecotone from Brazilian Mid-North. Biota Neotrópica. 13(2): 283-289. https://doi.org/10.1590/S1676-06032013000200027

Macedo, M.A.; Inoue-Nagata, A.K.; Silva, T.N.Z.; Freitas, D.M.S., Rezende, J.A.M.; Barbosa, J.C.; Michereff-Filho, M.; Nascimento, A.R.; Lourencao, A.L.; Bergamin Filho, A. (2018). Temporal and spatial progress of the disease caused by the crinivirus tomato chlorosis virus and the begomovirus tomato severe rugose virus in tomatoes in Brazil. Plant Pathology, 68(1):72-84. https://doi.org/10.1111/ppa.12920

Maeda, M.; Koyama, L.; Campos, R.; Kauffman, C.; Souza, J.; Gilbertson, R.; Inoue-Nagata, A.; Freitas, D.; Nogueira, D.; Melo, F.; Nagata, T. (2021). First report of watermelon crinkle leaf-associated virus 1 and 2 infecting watermelon (Citrullus lanatus) plants in Brazil. Plant disease. 106(2): 773. https://doi.org/10.1094/PDIS-06-21-1325-PDN

Michelotto, M.D.; Carrega, W.C.; Lamana, L.E.P.; de Souza, T.M.; de Godoy, I.J.; dos Reis, L.N.A.; Sales, A.L.M.; Carvalho, R.C.P. (2019). Losses caused by Groundbut ringspot tospovirus in penut crop in the state of São Paulo. Semina: Ciências Agrárias, 40(6): 3429-3442. 10.5433/1679-0359.2019v40n6Supl3p3429

Mou, D.F.; Chen, W.T.; Li W-H.; Chen, T.C.; Tseng, C.H.; Huang, L.H.; Peng, J.C.; Yeh, S-D.; Tsai, C-W. (2021). Transmission mode of watermelon silver mottle virus by Thrips palmi. PLoS ONE. 16(3): e0247500. https://doi.org/10.1371/journal.pone.0247500

Nagata, T.; Almeida, A.; Resende, R.; de Ávila, A. (2004). The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology. 53(2): 136-140. https://doi.org/10.1111/j.0032-0862.2004.00984.x

Pietersen, G.; Morris, J. (2002). Natural occurrence of Groundnut ringspot virus on Soybean in South Africa. Plant Disease. 86(11): 1271. https://doi.org/10.1094/PDIS.2002.86.11.1271C

Pozzi, E.; Luciani, C.; Celli, M.; Conci, V.; Perotto, M. (2021). Citrullus lanatus: un nuevo hospedante natural del Groundnut ringspot orthotospovirus en Argentina. Agriscientia. 38(1):71-78. http://dx.doi.org/10.31047/1668.298x.v38.n1.26732

Queiroz, A.; Alves, G.; Portella, A.; Santos, G.; Nascimento, I.; Didonet, J.; Lima, E.; Aguiar, R. (2016). Thrips species (Thysanoptera: thripidae) associated with watermelon crops in Central Brazil. International Journal of Current Research. 8(11): 42107-42111.

Rotenberg, D.; Whitfield, A. (2018). Molecular interactions between tospoviruses and thrips vectors. Current Opinion in Virology, 33: 191-197. https://doi.org/10.1016/j.coviro.2018.11.007

Santos, J.; Sarmento, R.; Pereira, P.; Noleto, L.; Reis, H.; Pires, W.; Peluzio, J.; Medeiros, J., Santos, A.; Picanço, M. (2021). Assessing the temporal dynamics of Frankliniella schultzei (Thysanoptera: Thripidae) in commercial soybean crops in North Brazil. Agricultural and Forest Entomology. 24(1): 97-103. https://doi.org/10.1111/afe.12471

Sarwar, M. (2020). Chapter 27: Insects as transport devices of plant viruses. In: Awasthi, L. Applied Plant Virology. pp. 381-402. 1st edition. Londres: Academic Press. 682p. https://doi.org/10.1016/B978-0-12-818654-1.00027-X

Waquil, J.; Teetes, G.; Peterson, G. (1986). Adult sorghum midge contained sorghicola díptera cecidomyiidae nonpreference for a resistant hybrid sorghum bicolor. Journal of Economic Entomology. 79(2): 455-458.

Zarzynska-Nowak, A.; Hasiów-Jaroszewska, B.; Korbecka-Glinka, G.; Przybys, M.; Borodynko-Filas, N. (2018). A multiplex RT-PCR assay for simultaneous detection of Tomato spotted wilt virus and Tomato yellow ring virus in tomato plants. Canadian Journal of Plant Pathology. 40(4): 580-586. https://doi.org/10.1080/07060661.2018.1503195

Publicado

2023-08-31 — Atualizado em 2023-09-20

Como Citar

Queiroz, A., Romero, M. A., Santos, G., & Aguiar, R. W. (2023). Detection of Groundnut ringspot virus carried by Frankliniella sp. on watermelon fields in Brazilian Cerrado. Revista De Ciencias Agrícolas, 40(2), e2211. https://doi.org/10.22267/rcia.20234002.211