Effect of microencapsulated Lactobacillus reuteri under simulated gastric conditions and its inhibition on Listeria monocytogenes
DOI:
https://doi.org/10.22267/rcia.20234001.202Palavras-chave:
Foods, gastric conditions, lactobacillus, Listeria monocytogenes, microencapsulation, prebiotics, probioticsResumo
Food-borne diseases (FDB) are responsible for causing approximately 600 million illnesses and 420,000 deaths per year. Biologically related FBDs are typically associated with ubiquitous microorganisms, with bacteria such as Li. monocytogenes, Escherichia coli, Salmonella and Staphylococcus aureus being frequently implicated. The use of probiotics is limited by adverse conditions, that can impair the stability of La. reuteri and the evaluation of its probiotic properties and effects on pathogenic bacteria. Therefore, it is crucial to develop effective strategies to protect probiotics during their use. This study was conducted aiming to determine the effect of microencapsulation by spray drying technique on the probiotic viability of La. reuteri on Li. monocytogenes under simulated gastric conditions. The research involved reconstituting, planting, and inoculating La. reuteri and Li. monocytogenes; determining fermentation kinetics; conducting spray drying microencapsulation; studying and characterizing of microencapsulation; testing for exopolysaccharides production; conducting temperature tests; assessing exposure to gastric conditions; and conducting antibiotic susceptibility and inhibition tests. Such investigations allowed the establishment of the exponential phase in Probiotic (PRO) culture medium at 18 h and in De Man, Rogosa and Sharpe agar (MRS) medium at 12 h, exopolysaccharide production positive and growth at different temperatures (1.95x1013 CFU/ml and 2.16x1012 CFU/ml), survival against gastric conditions (greater than 108 CFU/ml) and inhibitory effect of La. reuteri on Li. monocytogenes (halos larger than 2 mm). The probiotic La. reuteri microencapsulated in a binary matrix composed of inulin and maltodextrin expresses probiotic properties against Li. monocytogenes, which is responsible for FBD and great stability after undergoing simulated gastric conditions.
Downloads
##plugins.generic.paperbuzz.metrics##
Referências
Bauer, A.W.; Kirby, W.; Sherris, C.J.; Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Patho. 45(4): 493-496. https://doi.org/10.11
/AM.13.2.279-280.1965
Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; Clemente, A.; Corredig, M.; Dupont, D.; Dufour, C.; Edwards, C.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols. 14(4): 991-1014. https://doi.org/10.1038/s41596-018-0119-1
Cai, Y.; Puangpen, S.; Premsuda, S.; Benno, Y. (1999). Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. The Journal of General and Applied Microbiology. 45(4): 177-184. 10.2323/JGAM.45.177
Cheng, F.; Chen, H.; Lei, N.; Zhang, M.; Wan, H. (2019). Effects of carbon and nitrogen sources on activity of cell envelope proteinase produced by lactobacillus plantarum LP69-Research paper. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY. 23(1): 11-19. https://doi.org/10.2478/aucft-2019-0002
Crespo, A. (2019). Cultivo de lactobacillus reuteri en solitario y en cocultivo con scherichia coli a 37°C. España: Universidad de Valladolid.
Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P. A.; Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry. 28(3): 350-356. 10.1021/AC60111A017/ASSET/AC60
A017.FP.PNG_V03
El-Enshasy, H.A.; Yang, S.T. (2021). Probiotics, the Natural Microbiota in Living Organisms. 1st ed. Boca Raton: CRC Press. 380p. 10.1201/9781351027540
Espinosa-Mata, E.; Mejía, L.; Villacís, J.E.; Alban, V.; Zapata, S. (2021). Detection and genotyping of Listeria monocytogenes in artisanal soft cheeses from Ecuador. Revista Argentina de Microbiologia. 54(1): 53-56. 10.1016/j.ram.2021.02.013
Fajardo-Argoti, C.; Jurado-Gámez, H.; Parra-Suescún, J. (2021). Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 Viability of microencapsulated Lactobacillus plantarum under simulated gastrointestinal conditions and inhibit. Revista U.D.C.A Actualidad & Divulgación Científica. 24(1): e1733. 10.31910/rudca.v24.n1.2021.1733
Fang, J.W. (2020). Caracterización de bacterias ácido lácticas (BAL) aisladas de ensilados de piña como microorganismos con potencial probiótico y determinación de su aplicabilidad como cultivo bioprotector en leche agria. http://repositorio.ucr.ac.cr/bitstream/handle/10669/82704/Trabajo final de graduación completo Jannette Wu con firmas.pdf?sequence=1&isAllowed=y
Gúzman-Insuasty, M.; Jarrín-Jarrín, V.; Jurado-Gámez, H. (2015). Determinación De La Cinética, Pruebas De Crecimiento Microbiano y Efecto de Inhibición In Vitro de Lactobacillus lactis en Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae Y Escherichia coli. Rev de La Facultad de Medicina Veterinaria y de Zootecnia. 62(2): 40-56. 10.15446/rfmvz.v62n2.51993
Hutkins, R. (2019). Microbiology and Technology of Fermented Food. Chicago: Blackwell Publishing. 10.1002/9780470277515
Jurado-Gámez, H.A.; Zambrano-Mora, E.J.; Pazos-Moncayo, A. (2021). Adición de un probiótico de Lactobacillus plantarum microencapsulado en el alimento para pollos. Universidad y Salud. 23(2):151-161. 10.22267/RUS.212302.227
Jurado-Gámez, H.; Calpa-Yama, F.; Chaspuengal-Tulcán, A. (2014). DETERMINACIÓN In Vitro DE LA ACCIÓN PROBIÓTICA DE Lactobacillus plantarum SOBRE Yersinia pseudotuberculosis AISLADA DE Cavia porcellus. Revista de La Facultad de Medicina Veterinaria y de Zootecnia. 61(3): 241-257. 10.15446/RFMVZ.V61N3.46872
Jurado-Gámez, H.; Martínez-Benavides, J.; Morillo-Garcés, J.A.; Orbes-Villacorte, A.E.; Mesías-Pantoja, L.N. (2016). Cinética de fermentación, pruebas de desafío in vitro y efecto de inhibición de Lactobacillus gasseri ATCC 19992. Veterinaria y Zootecnía. 10(2): 72-89. 10.17151/vetzo.2016.10.2.7
Jurado-Gámez, H.; Ramírez, C.; Aguirre, D. (2013). Cinética de fermentación de Lactobacillus plantarum en un medio de cultivo enriquecido como potencial probiótico. Veterinaria y Zootecnía. 7(2): 37-53.
Kanauchi, M. (2019). Lactic Acid Bacteria: Methods and Protocols (Vol. 1887). New York: Springer. 10.1007/978-1-4939-8907-2
Kowalska, E.; Ziarno, M.; Ekielski, A.; Żelaziński, T. (2022). Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules. 27(10): 1-19. 10.3390/MOLECULES27103321
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. (1951). Protein measurement with the folin phenol reagent*. J Biol Chem. 193(1): 265-275. 10.1016/S0021-9258(19)52451-6
Maggio, F.; Rossi, C.; Chiaverini, A.; Ruolo, A.; Orsini, M.; Centorame, P.; Acciari, V.A.; Chaves López, C.; Salini, R.; Torresi, M.; Serio, A.; Pomilio, F.; Paparella, A. (2021). Genetic relationships and biofilm formation of Listeria monocytogenes isolated from the smoked salmon industry. International Journal of Food Microbiology. 356: 109353. https://doi.org/10.1016/J.IJFOOD
MICRO.2021.109353
Marefati, A.; Pitsiladis, A.; Oscarsson, E.; Ilestam, N.; Bergenståhl, B. (2021). Encapsulation of Lactobacillus reuteri in W1/O/W2 double emulsions: Formulation, storage and in vitro gastro-intestinal digestion stability. LWT. 146: 111423. 10.1016/J.LWT.2021.111423
May-Torruco, A.L.; Corona-Cruz, A.I.; Luna Jiménez, A.L.; González-Cortés, N.; Jiménez-Vera, R. (2020). Sensibilidad y Resistencia a Antibióticos de Cepas Probióticas Empleadas en Productos Comerciales. European Scientific Journal ESJ. 16(18): 43-60. 10.19044/esj.2020.v16n18p43
Mejía, C.J. (2022). Efecto de las bacteriocinas de bacterias ácido lácticas provenientes de yogurt probiótico sobre el crecimiento de Salmonella spp y Staphylococcus aureus. http://hdl.handle.net/20.500.14074/5362
Mendonca, A.; Thomas-Popo, E.; Gordon, A. (2020). Microbiological considerations in food safety and quality systems implementation. In: Gordon, A. Food Safety and Quality Systems in Developing Countries. pp. 185-260. Academic Press. 10.1016/b978-0-12-814272-1.00005-x
Montes, L.M. (2013). Efecto de la microencapsulación con agentes prebióticos sobre la viabilidad de microorganismos probióticos (Lactobacillus casei ATCC 393 y Lactobacillus rhamnosus ATCC 9469). https://repositorio.unal.edu.co/handle/unal/11893.
Popović, M.; Stojanović, M.; Veličković, Z.; Kovačević, A.; Miljković, R.; Mirković, N.; Marinković, A. (2021). Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. International Journal of Biological Macromolecules. 183: 423-434. 10.1016/j.ijbiomac.2021.04.177
Reuben, R. C.; Roy, P. C.; Sarkar, S. L.; Alam, R. U.; Jahid, I. K. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiology. 19(1): 1–20. https://doi.org/10.1186/S12866-019-1626-0/TABLES/9
Rodríguez, S.; Giraldo, G. I.; Montes, L.M. (2016). Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebioticos. Información Tecnológica. 27(6): 135-144. 10.4067/S0718-07642016000600014
Rojas, J.M. (2020). Produccion de exopolisacaridos a partir de bacterias ácido lácticas utilizando tusa de maíz como fuente de carbono. https://www.conacyt.gov.py/sites/default/files/BECA02-38_Jissel Armoa.pdf
Romero-Benavides, D.A.; Morillo-Garces, J.A.; Jurado-Gámez, H.A. (2016). Inhibición de lactobacillus gasseri sobre yersinia pseudotuberculosis bajo condiciones in vitro. Rev de La Facultad de Medicina Veterinaria y de Zootecnia. 63(2): 95-112. 10.15446/RFMVZ.V63N2.59357
Rosales-Bravo, H.; Vázquez-Martínez, J.; Morales-Torres, H.C.; Olalde-Portuga, V. (2020). Evaluación de propiedades tecno-funcionales de cepas probióticas comerciales del género Lactobacillus. RIIIT. Revista Internacional de Investigación e Innovación Tecnológica. 8(45): https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-97532020000400001
Santander, M.J. (2021). Validación de un software electrónico para el conteo de unidades formadoras de colonias y determinación de sensibilidad bacteriana en muestras de leche cruda. http://dspace.espoch.edu.ec/handle/1
/15406
Sinsajoa-Tepud, M.; Jurado-Gamez, H.; Narváez-Rodríguez, M. (2019). Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli O157:H7. Revista de La Facultad de Medicina Veterinaria y Zootecnia. 66(3): 231-244. 10.15446/rfmvz.v66n3.84260
Sørensen, H. M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C; Freeland, B. (2022). Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients. 14(14):1-33. 10.3390/NU14142938
Taylor, M.H.; Zhu, M.J. (2021). Control of Listeria monocytogenes in low-moisture foods. Trends in Food Science & Technology. 116: 802-814. 10.1016/J.TIFS.2021.07.019
Thatoi, H.; Mohapatra, P.K.; Das, Mohapatra, S.; Mondal, K.C. (2020). Microbial fermentation and Enzyme Technology. Boca Raton: CRC Press. 10.1201/9780429061257
Vázquez-Ortiz, A.A.; Vázquez-Ovando, Alfredo.; Ruiz-González, S.; López-Martínez, G.; Gyves-Córdova, M.G.; Mejía-Reyes, J.D. (2022). Capacidad probiótica preliminar de bacterias ácido lácticas aisladas de diferentes fuentes. IBCIENCIAS. 5(2): 18-25. https://www.researchgate.net/publication/368634761
Zhang, L.; Zhao, B.; Liu, C.J.; Yang, E.; (2020). Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test. Indian Journal of Microbiology. 60(3): 335. 10.1007/S12088-020-00865-8
Zhao, H.; Zhang, F.; Chai, J.; Wang, J. (2020). Effect of lactic acid bacteria on Listeria monocytogenes infection and innate immunity in rabbits. Czech Journal of Animal Science. 65(1): 23-30. 10.17221/247/2019-CJAS
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista de Ciencias Agrícolas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.