Efficiency of inoculation methods for genotypes selection in corn ear rot disease studies
DOI:
https://doi.org/10.22267/rcia.223902.191Palavras-chave:
disease severity, Fusarium verticillioides, grain yield, pathogen resistance, plant protection, Zea maysResumo
The identification of resistance of plants to pathogens is crucial for the development of hybrids by breeding programs. To achieve that, it is of great relevance to establish effective inoculation methods for characterizing genotypes with adequate plant resistance levels. Several inoculation methods have been investigated in the search for resistance to corn ear rot disease. However, studies evaluating different corn genotypes cultivated under Neotropical field conditions remain unexplored. Here, we compared three inoculation methods (i.e., aspersion, injectable, and natural) of Fusarium verticillioides in corn ears, and evaluated disease severity and grain yield of 10 corn genotypes. The experiments were conducted in two consecutive experimental corn crop (i.e., 2015 and 2016) seasons located in cities with different environmental temperatures and belonging to different Brazilian states (i.e., Gurupi – Tocantins State, Itumbiara – Goiás State, Planaltina – Brazilian Federal District, and Toledo – Paraná State). We evaluated the mass of 1000 grains and the severity of the disease. Regarding the disease severity, our results showed that the artificial inoculation was more efficient in the regions of Planaltina and Toledo, not affecting grains’ mass in these localities. The severity of disease on the conditions of Toledo was similar for the ten genotypes. However, it was possible to identify two contrasting genotypes since P4285H (low severity) and 32R48YH (medium severity) exhibited significantly more disease symptoms in all other regions. Although the differences regarding the efficiency of inoculation methods are more evident in regions with milder temperatures, the results showed that the characterization of genotypes susceptible to the pathogen is more efficient in regions with higher temperatures.
Downloads
##plugins.generic.paperbuzz.metrics##
Referências
Adeniji, A. A.; Babalola, O. O. (2018). Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors. Archives of Microbiology. 200: 1239-1255. doi: https://doi.org/10.1007/s00203-018-1542-y
Agroceres. (1996). Guia de Sanidade Agroceres, São Paulo. 76p.
Bamisile, B. S.; Dash, C. K.; Akutse, K. S.; Keppanan, R.; Afolabi, O. G.; Hussain, M.; Qasim, M.; Wang, L. (2018). Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research. 217: 34-50. doi: https://doi.org/10.1016/j.micres.2018.08.016
Cao, A.; Santiago, R.; Ramos, A. J.; Souto, X. C.; Aguín, O.; Malvar, R. A.; Butrón, A. (2014). Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. International Journal of Food Microbiology. 177: 63-71. doi: https://doi.org/10.1016/j.ijfoodmicro.2014.02.004
Carvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. Journal of Cereal Science. 103: 103293. doi: https://doi.org/10.1016/j.jcs.2021.103293
Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. (2021). Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules. 26: 5238. doi: https://doi.org/10.3390/molecules26175238
CONAB. (2022). Companhia Nacional de Abastecimento. Retrieved from:https://www.conab.gov.br/busca?searchword=milho&ordering=newest&searchphrase
De Jong, G., Pamplona, A. K. A., Von Pinho, R. G., & Balestre, M. (2018). Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics. 110(5): 291-303. doi: https://doi.org/10.1016/j.ygeno.2017.12.001
Doyle, J. (1991). DNA protocols for plants. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (eds) Molecular Techniques in Taxonomy. pp 283-293. NATO ASI Series, vol 57. Berlin, Heidelberg: Springer.
Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security. 14: 1-25. doi: https://doi.org/10.1007/s12571-022-01288-7
Fernandez, M. (1993). Manual para laboratório de fitopatologia. Passo Fundo: Embrapa-CNTP. 128 p.
Gai, X.; Dong, H.; Wang, S.; Liu, B.; Zhang, Z.; Li, X.; Gao Z. (2018). Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. PLoS One. 13: e0201588. doi: https://doi.org/10.1371/journal.pone.0201588
Gaikpa, D. S.; Miedaner, T. (2019). Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Theoretical and Applied Genetics. 132: 2721-2739. doi: https://doi.org/10.1007/s00122-019-03412-2
Garcia, D., Barros, G., Chulze, S., Ramos, A. J., Sanchis, V., & Marín, S. (2012). Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. Journal of the Science of Food and Agriculture. 92(15): 2952-2959. doi: https://doi.org/10.1002/jsfa.5707
Jiang, W.; Han, W.; Wang, R.; Li, Y.; Hu, G.; Yang, J.; Jiang, D.; Han, W.; Wang, M.; Li, G. (2021). Development of an inoculation technique for rapidly evaluating maize inbred lines for resistance to stalk rot caused by Fusarium spp. in the field. Plant Disease. 105: 2306-2313. doi: https://doi.org/10.1094/PDIS-09-20-2016-SR
Kamle, M.; Mahato, D. K.; Devi, S.; Lee, K. E.; Kang, S. G.; Kumar, P. (2019). Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins. 11: 328. doi: https://doi:10.3390/toxins11060328
Łaźniewska, J.; Macioszek, V. K.; Kononowicz, A. K. (2012). Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology. 78: 24-30. doi: https://doi.org/10.1016/j.pmpp.2012.01.004
Leslie, J. F.; Summerell B. A. (2008). The Fusarium laboratory manual: John Wiley & Sons. Australia: Blackwell publishing. 416p.
Leggieri, M.; Giorni, P.; Pietri, A.; Battilani, P. (2019). Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the impact on mycotoxin production. Frontiers in Microbiology. 10. doi: https://doi.org/10.3389/fmicb.2019.02653
Li, J.; Xu, X.; Ma, Y.; Sun, Q.; Xie, C.; Ma J. (2022). An improved inoculation method to detect wheat and barley genotypes for resistance to Fusarium crown rot. Plant Disease. 106: 1122-1127. doi: https://doi.org/10.1094/PDIS-09-21-1871-RE
Mesterhazy A. (2020). Updating the breeding philosophy of wheat to Fusarium head blight (FHB): Resistance components, QTL identification, and rhenotyping—A Review. Plants. 9: 1702. doi: https://doi.org/10.3390/plants9121702
Mesterházy, Á.; Lemmens, M.; Reid, L. M. (2012). Breeding for resistance to ear rots caused by Fusarium spp. in maize – a review. Plant Breeding. 131: 1-19. doi: https://doi.org/10.1111/j.1439-0523.2011.01936.x
Modrzewska, M.; Bryła, M.; Kanabus, J.; Pierzgalski, A. (2022). Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: Opportunities and possibilities. Plant Pathology. 71: 1471– 1485 doi: https://doi.org/10.1111/ppa.13578
Munkvold, G. P.; Desjardins, A. E. (1997). Fumonisins in Maize: Can we reduce their occurrence? Plant Disease. 81: 556-565. doi: https://doi.org/10.1094/PDIS.1997.81.6.556
Murillo-Williams, A., & Munkvold, G. P. (2008). Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant disease. 92(12): 1695-1700. doi: https://doi.org/10.1094/PDIS-92-12-1695
Pfordt, A.; Ramos Romero, L.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. (2020). Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear- and stalk rot in maize. Pathogens. 9: 236. doi: https://doi.org/10.3390/pathogens9030236
Rosa Junior, O. F.; Dalcin, M. S.; Nascimento, V. L.; Haesbaert, F. M.; Ferreira, T. P. d. S.; Fidelis, R. R.; Sarmento, R. d. A.; Aguiar, R. W. d. S.; Oliveira, E. E.; Santos, G. R. (2019). Fumonisin production by Fusarium verticillioides in maize genotypes cultivated in different environments. Toxins. 11: 215. doi: https://doi.org/10.3390/toxins11040215
Roucou, A.; Bergez, C.; Méléard, B.; Orlando, B. (2021). A fumonisin prevention tool for targeting and ranking agroclimatic conditions favoring exposure in French maize-growing areas. Toxins. 13: 214. doi: https://doi.org/10.3390/toxins13030214
SAS (2003) SAS Institute SAS/STAT User Guide In: SAS, Cary. NC, USA.
Schaafsma, A. W.; Miller, J. D.; Savard, M. E.; Ewing, R. J. (1993). Ear rot development and mycotoxin production in corn in relation to inoculation method, corn hybrid, and species of Fusarium. Canadian Journal of Plant Pathology. 15: 185-192. doi: https://doi.org/10.1080/07060669309500821
Soni, P.; Gangurde, S. S.; Ortega-Beltran, A.; Kumar, R.; Parmar, S.; Sudini, H. K.; Lei, Y.; Ni, X.; Huai, D.; Fountain, J. C.; Njoroge, S.; Mahuku, G.; Radhakrishnan, T.; Zhuang, W.; Guo, B.; Liao, B.; Singam, P.; Pandey, M. K.; Bandyopadhyay, R.; Varshney, R. K. (2020). Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Frontiers in Microbiology. 11:227. doi: https://doi.org/10.3389/fmicb.2020.00227
Thompson, M. E. H.; Raizada, M. N. (2018). Fungal pathogens of maize gaining free passage along the silk road. Pathogens. 7: 81. doi: https://doi.org/10.3390/pathogens7040081
Veljković, V. B.; Biberdžić, M. O.; Banković-Ilić, I. B.; Djalović, I. G.; Tasić, M. B.; Nježić, Z. B.; Stamenković, O. S. (2018). Biodiesel production from corn oil: A review. Renewable and Sustainable Energy Reviews. 91: 531-548. doi: https://doi.org/10.1016/j.rser.2018.04.024
Yang, P.; Scheuermann, D.; Kessel, B.; Koller, T.; Greenwood, J. R.; Hurni, S.; Herren, G.; Zhou, S.; Marande, W.; Wicker, T.; Krattinger, S. G.; Ouzunova, M.; Keller B. (2021). Alleles of a wall-associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize. The Plant Journal. 106: 526-535. doi: https://doi.org/10.1111/tpj.15183
Zhang, H.; Van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. (2012). Population analysis of the Fusarium graminearum species complex from wheat in china show a shift to more aggressive isolates. PLoS One. 7: e31722. doi: https://doi.org/10.1371/journal.pone.0031722
Zhang M., Sun X., Cui L., Yin Y., Zhao X., Pan S., Wang W. (2018). The plant infection test: Spray and wound-mediated inoculation with the plant pathogen Magnaporthe Grisea. JoVE. e57675. doi: https://doi.org/10.3791/57675
Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. (2021). Comprehensive utilization of corn starch processing by-products: A review. Grain & Oil Science and Technology. 4: 89-107. doi: https://doi.org/10.1016/j.gaost.2021.08.003
Zhao, Y.; Damgaard, A.; Christensen, T. H. (2018). Bioethanol from corn stover – a review and technical assessment of alternative biotechnologies. Progress in Energy and Combustion Science. 67: 275-291. doi: https://doi.org/10.1016/j.pecs.2018.03.004
Zhou, D.; Wang, X.; Chen, G.; Sun, S.; Yang, Y.; Zhu, Z.; Duan, C. (2018). The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins. 10: 90. doi: https://doi.org/10.3390/toxins10020090
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Revista de Ciencias Agrícolas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.