Effect of edaphic silicon on the quality and postharvest of ‘Dorado’ peach (Prunus persica) fruits

Autores

DOI:

https://doi.org/10.22267/rcia.20234003.218

Palavras-chave:

firmness, carotenoids, respiratory rate, decidious tree, mass loss

Resumo

In recent years, Colombia has seen an increase in the demand for peach fruits, but despite having adequate areas for peach production, neither production nor quality has increased because these fruits have a short post-harvest life and low firmness, which makes them susceptible to manipulation. The nutritional element Silicon affects the quality of these fruits when applied in fertilization, increasing firmness values, improving color, and favoring the concentration of metabolites. Therefore, the objective was to evaluate the edaphic application of different doses of silicon in the postharvest behavior of 'Dorado' peach fruits to maintain quality during storage for a longer time. A completely randomized block design with two blocks (stratum 1 and stratum 2) and five treatments (0, 300, 600, 900, or 120 kg ha-1 of silicon) was evaluated. The fruits from plants fertilized with 1200 kg ha-1 of Si showed more firmness and total soluble solids (TSS); however, the application of Si did not affect the other parameters. Fruits from stratum 1 had higher firmness and TSS than those from stratum 2, while the total carotenoids were not affected by stratum. The total titratable acidity and luminosity of the fruits decreased during postharvest, while the TSS only showed a slight increase. The respiratory rate presented the highest value ​​at 11 days of storage.

 

Downloads

Não há dados estatísticos.

##plugins.generic.paperbuzz.metrics##

Carregando Métricas ...

Referências

Abd-Alkarim, E.; Bayoumil, Y.; Metwally, E.; Rakha, M. (2017). Silicon supplements affect yield and fruit quality of cucumber (Cucumis sativus L.) grown in net houses. African Journal of Agricultural Research 12(31): 2518-2523. doi: 10.5897/AJAR2017.12484

Abidi, W.; Akrimi, R.; Hajlaoui, H.; Rejeb, H.; Gogorcena, Y. (2023). Foliar fertilization of potassium silicon improved postharvest fruit quality of peach and nectarine [Prunus persica (L.) Batsch] Cultivars. Agriculture. 13(1): 195. 10.3390/agriculture13010195

Africano, K.; Almanza, P.; Balaguera, H. (2015). Fisiología y bioquímica de la maduración del fruto de Durazno (Prunus pesica (L) Batsch). Una revisión. Revista Colombiana de Ciencias Hortícolas 9(1): 161-172. 10.17584/rcch.2015v9i1.3754

Africano, K.L.; Almanza-Merchán, P.J.; Criollo, H.; Herrera, A.; Balaguera-López, H.E. (2016). Caracterización poscosecha del fruto de durazno (Prunus pesica (L.) Batsch) cv. Dorado producido bajo condiciones del trópico alto. Revista Colombiana de Ciencias Hortícolas. 10(2): 232-240. 10.17584/rcch.2016v10i2.5212

Akdemir, S.; Bal, E. (2022). Effect of the ambient factors in boxes and cold store on quality of stored peach. Erwerbs-Obstbau 64: 47-53. 10.1007/s10341-021-00612-3

Alvarado-Chávez, J.A.; Gómez-González, A.; Lara-Herrera, A.; Díaz-Pérez, J.C.; García-Herrera, E.J. (2020). Yield and quality of strawberry fruit grown in a greenhouse in a pyramidal hydroponic system. Revista Mexicana de Ciencias Agrícolas. 11(8): 1737-1748. 10.29312/remexca.v11i8.2460

Álvarez-Herrera, J.G.; Deaquiz, Y.A.; Rozo-Romero, X. (2021). Effect of Storage Temperature and Maturity Stage on the Postharvest Period of 'Horvin' Plums (Prunus domestica L.). Ingeniería e Investigación. 41(2): e82530. 10.15446/ing.investig.v41n2.82530

Analdex - Asociación Nacional de Comercio Exterior. (2023). Informe de exportaciones colombianas de frutas - 2022. https://www.analdex.org/wp-content/uploads/2023/04/Informe-de-Exportaciones-de-Fruta-2022.pdf

Bai, Q.; Shen, Y.; Y Huand, Y. (2021). Advances in mineral nutrition transport and signal transduction in Rosaceae fruit quality and postharvest storage. Frontiers in Plant Science. 12: 620018. doi: 10.3389/fpls.2021.620018

Cao, S.; Liang, M.; Shi, L.; Shao, J.; Song, C.; Bian, K.; Chen, W.; Yang, Z. (2017). Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chemistry. 214: 137-146. doi: 10.1016/j.foodchem.2016.07.085

Capriolli, I.; Lafuente, M.T.; Rodrigo, M.J.; Mencarelli, F. (2009). Influence of postharvest treatments on quality, carotenoids, and abscisic acid content of stored “Spring Belle” peach (Prunus persica) Fruit. Journal of Agricultural and Food Chemistry. 57(15): 7056–7063. doi: 10.1021/jf900565g

Deaquiz-Oyola, Y.A. (2014). Los frutos y su fotosíntesis. Conexión Agropecuaria. 4(1): 39-47.

Deshmukh, R.; Sonah, H.; Belanger, R.R. (2020). New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. Journal of Experimental Botany. 71(21): 6775–6788. doi: 10.1093/jxb/eraa342

Díaz-Pérez, J.C. (2014). Bell pepper (Capsicum annuum L.) crop as affected by shade level: fruit yield, quality, and postharvest attributes, and incidence of Phytophthora blight (caused by Phytophthora capsici L.). HortScience. 49(7): 891-900. doi: 10.21273/HORTSCI.49.7.891

Díaz-Pérez, M.E. (2019). Transpiration. In: Yahia, E.M. y Carrillo-López, A. (eds.). Postharvest physiology and biochemistry of fruits and vegetables. pp. 157-173. Kidlington, United Kingdom: Ed. Elsevier. doi: 10.1016/B978-0-12-813278-4.00008-7

Gallegos-Cedillo, V. M.; Álvaro, J. E.; Capatos, T.; Hachmann, T. L.; Carrasco, G.; Urrestarazu, M. (2018). Effect of pH and Silicon in the fertigation solution on vegetative growth of blueberry plants in organic agriculture. HortScience. 53(10): 1423-1428. doi: 10.21273/HORTSCI13342-18

García, A. (2006). Caracterización física y química de duraznos (Prunus persica (L.) Batsch) y efectividad de la refrigeración comercial en frutos acondicionados. Bioagro 18(2): 115-121.

Karagiannis, E.; Michailidis, M.; Skodra, C.; Molassiotis, A.; Tanou, G. (2021). Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiology and Biochemistry. 166: 270-277. 10.1016/j.plaphy.2021.05.037

Korkmaz, A.; Karagöl, A.; Akinoğlu, G.; Korkmaz, H. (2017). The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. Journal of Plant Nutrition. 41(1): 123-135. 10.1080/01904167.2017.1381975

Lado, J.; Alós, E.; Manzi, M.; Cronje, P.J.R.; Gómez-Cadenas, A.; Rodrigo, M.J.; Zacarías, L. (2019). Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits. Frontiers in Plant Science. 10: 1288. 10.3389/fpls.2019.01288

Liu, H.; Cao, X.; Azam, M.; Wang, C.; Liu, C.; Qiao, Y.; Zhand, B. (2022). Metabolism of carotenoids and β-Ionone are mediated by carotenogenic genes and PpCCD4 under ultraviolet B irradiation and during fruit ripening. Frontiers in Plant Science. 13: 814677. 10.3389/fpls.2022.814677

Ma, J.; Li, J.; Zhao, J.; Zhou, H.; Ren, F.; Wang, L.; Gu, C.; Liao, L.; Han, Y. (2014). Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) Leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Molecular Biology Reporter. 32(1): 246-257. 10.1007/s11105-013-0650-8

Madani, B.; Mirshekari, A.; Imahori, Y. (2019). Physiological Responses to Stress. En: Yahia, E.M. y Carrillo-López, A. (eds.). Postharvest physiology and biochemistry of fruits and vegetables. pp. 405-423. Kidlington, United Kingdom: Ed. Elsevier. 10.1016/B978-0-12-813278-4.00020-8

Mariño-González, L.A.; Buitrago, C.M.; Balaguera-López, H.E.; Martínez-Quintero, E. (2019). Effect of 1-methylcyclopropene and ethylene on the physiology of peach fruits (Prunus persica L.) cv. Dorado during storage. Revista Colombiana de Ciencias Hortícolas. 13(1): 46-54. 10.17584/rcch.2019v13i1.8543

Marodin, J.; Resende, J.; Morales, R.; Faria, M.; Treviza, A.; Figueiredo, A.; Dias, D.M. (2016). Tomato postharvest durability and physicochemical quality depending on silicon sources and doses. Horticultura Brasileira. 34(3): 361-366. 10.1590/S0102-05362016003009

MADR- Ministerio de Agricultura y Desarrollo Rural. (2019). Evaluaciones agropecuarias 2007-2017. https://www.agronet.gov.co/Documents/31-DURAZNO_2017.pdf

Nascimento-Silva, K.; Benlloch-González, M.; Pavuluri, K.; Melgar, J.C. (2022). Effects of silicon on tolerance to water deficit in peach trees. Acta Horticulturae. 1333: 89-92. 10.17660/ActaHortic.2022.1333.12

Nuzzi, M.; Grassi, M.; Sartori, A.; Terlizzi, M.; Buccheri, M. (2015). Postharvest changes in quality characteristics, antioxidant activity and bioactive compounds of peach and nectarine cultivars (Prunus Persica (L.) Batsch). Advances in Horticultural Science. 29(2/3): 109-115.

Orazem, P.; Mikulic-Petkovsek, M.; Stampar, F.; Hudina, M. (2013). Changes during the last ripening stage in pomological and biochemical parameters of the “Redhaven” peach cultivar grafted on different rootstocks. Scientia Horticulturae. 160: 326-334. 10.1016/j.scienta.2013.06.016

Ouellette, S.; Goyette, M.H.; Labbé, C.; Laur, J.; Gaudreau, L.; Gosselinn, A.; Dorais, M.; Deshmukh, R.; Bélanger, R.R. (2017). Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science. 8: 949. 10.3389/fpls.2017.00949

Pavanello, E.; Brackmann, A.; Dressler, I.; Both, V.; Ludwing, V. (2016). Use of sodium metasilicate for management of peach brown rot. Pesquisa Agropecuária Tropical. 46(3): 245-253. 10.1590/1983-40632016v4641221

Peña, R.; Galencio, M. (2019). Efecto del silicio orgánico en el rendimiento de maracuyá (Passiflora edulis), cultivada en Somate-sullana. Revista de Investigaciones de la Universidad Le Cordon Bleu. 6(1): 25-37. 10.36955/RIULCB.2019v6n1.002

Pérez-López, A.; Chávez-Franco, S.H.; Villasenor-Perea, C.A.; Espinosa-Solares, T.; Hernández-Gómez, L.H.; Lobato-Calleros, C. (2014). Respiration rate and mechanical properties of peach fruit during storage at three maturity stages. Journal of Food Engineering. 142: 111-117. 10.1016/j.jfoodeng.2014.06.007

Pérez-López, A.; Ramírez-Guzmán, M.E.; Espinosa-Solares, T.; Aguirre-Mandujano, E.; Villaseñor-Perea, C.A. (2020). Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models. Scientia Agropecuaria. 11(1): 23-29. 10.17268/sci.agropecu.2020.01.03

Peris-Felipo, F.J.; Benavent-Gil, Y.; Hernández-Apaolaza, L. (2020). Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiology and Biochemistry. 152: 23-31. 10.1016/j.plaphy.2020.04.026

Pinto, C.; Reginato, G.; Shinya, P.; Mesa, K.; Díaz, M.; Atenas, C.; Infante, R. (2015). Skin color and chlorophyll absorbance: Indices for establishing a harvest date on non-melting peach. Scientia Horticulturae. 192: 231-236. 10.1016/j.scienta.2015.05.033

Pinzón, E.H.; Morillo, A.; Fischer, G. (2014). Aspectos Fisiológicos del Duraznero (Prunus persica [L] Batsch) en el trópico alto Una revisión. Revista U.D.C.A Actualidad & Divulgación Científica. 17(2): 401-411. 10.31910/rudca.v17.n2.2014.243

Pinzón-Sandoval, E.; Quintana, W.; Cely-Reyes, G. (2017). Effect of magnesium silicate in cv. ‘ICA Cerinza’ common bean (Phaseolus vulgaris L.) under field conditions. Revista Facultad Nacional de Agronomía Medellín. 70(3): 8285-8293. 10.15446/rfna.v70n3.62679

Agronet. (2020). Evaluaciones Agropecuarias Municipales: Área sembrada, área cosechada, producción y rendimiento del cultivo de durazno según departamento. http://www.agronet.gov.co/Documents/31-DURAZNO_2017.pdf

Rodríguez-Félix, A.; Fortiz, J.; Villegas, M. (2011). Cambios de enzimas pectolíticas durante la maduración del durazno ‘Flordaprince’. Interciencia. 36(1): 65-70.

Sañudo-Barajas, J.; Lipan, L.; Cano-Lamadrid, M.; Vélez, R.; Noguera-Artiaga, L.; Sánchez-Rodríguez, L.; Carbonell-Barrachina, A.A.; Hernández, F. (2019). Texture. In: Yahia, E.M.; Carrillo-López, A. (eds.). Postharvest physiology and biochemistry of fruits and vegetables. pp. 293-314. Kidlington, United Kingdom: Ed. Elsevier. 10.1016/B978-0-12-813278-4.00014-2

Sattar, S.; Imran, M.; Mushtaq, Z.; Haseeb, M.; Holmes, M.; Maycock, J.; Imran-Khan, M.; Yasmin, A.; Kamran, M.; Muhammad, N. (2019). Functional quality of optimized peach‐based beverage developed by application of ultrasonic processing. Food Science & Nutrition. 7: 3692–3699. doi: 10.1002/fsn3.1227

Seyfferth, A.L.; Morris, A.H.; Gill, R.; Kearns, K.A.; Mann, J.N.; Paukett, M.; Leskanic, C. (2016). Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. Journal of Agricultural and Food Chemistry, 64(19): 3760-3766. 10.1021/acs.jafc.6b01201

Shi, Y.; Zhang, Y.; Han, W.; Feng, R.; Hu, Y.; Guo, J.; Gong, H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science. 7:196. 10.3389/fpls.2016.00196

Song, J.; Wang, X.; Li, D.; Liu, C. (2017). Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. International Journal of Food Properties. 20(1): 632-643. 10.1080/10942912.2017.1306553

Turbaña, B.; Heckman, R. (2015). Silicon in soils and Plants. In: Rodríguez, F.; Datnoff, L. (eds.). Silicon and Plant Diseases. pp. 2-46. Switzerland: Ed. Springer Cham. 10.1007/978-3-319-22930-0_2

Vallarino, J.G.; Osorio, S. (2019). Organic Acids. In: Yahia, E.M.; Carrillo-López, A. (eds.). Postharvest physiology and biochemistry of fruits and vegetables. pp. 207-224. Kidlington, United Kingdom: Ed. Elsevier. 10.1016/B978-0-12-813278-4.00010-5

Vargas-Torres, A.; Becerra-Loza, A.S.; Sayago-Ayerdi, S.G.; Palma-Rodríguez, H.M.; García-Magaña, M.L.; Montalvo-González, E. (2017). Combined effect of the application of 1-MCP and different edible coatings on the fruit quality of jackfruit bulbs (Artocarpus heterophyllus Lam.) during cold storage. Scientia Horticulturae. 214: 221-227. 10.1016/j.scienta.2016.11.045

Wang, Y.; Ren, S.; Li, X.; Luo, X.; Deng, Q. (2022). Shading inhibits sugar accumulation in leaf and fruit of jujube (Ziziphus jujuba Mill.). Horticulturae, 8(7), 592. 10.3390/horticulturae8070592

Weerahewa, H.L.D.; Wicramasekara, I. (2020). Preharvest application of silicon reduces internal browning development of pineapple (Ananas comosus “Mauritius”) during cold storage: a novel approach. Acta Horticulturae. 1278: 39-44. 10.17660/ActaHortic.2020.1278.6

Zanäo, L.; Alvarez, V.; Fontes, R.; Carvalho, M.; Pereira, N. (2019). Silicon sources for studies of rice plants in nutrient solutions. Bioscience Journal. 35(6): 1659-1663. 10.14393/BJ-v35n6a2019-42421

Publicado

2023-12-20

Como Citar

Álvarez-Herrera, J. G., Molano-Diaz, J. M., & Camacho-Torres, Y. M. (2023). Effect of edaphic silicon on the quality and postharvest of ‘Dorado’ peach (Prunus persica) fruits. Revista De Ciencias Agrícolas, 40(3), e3218. https://doi.org/10.22267/rcia.20234003.218