contadores
Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Research Article

v. 40 n. 3 (2023): Revista de Ciencias Agrícolas - Tercer semestre, Septiembre - Diciembre 2023

Determination of the main flavonoids in ojo de gallo (Sanvitalia procumbens Lamarck) yerba extracts from three different sites as potential biomolecules

DOI
https://doi.org/10.22267/rcia.20234003.215
Enviado
outubro 6, 2023
Publicado
2023-11-17

Resumo

This work focuses on determining the main flavonoids with medicinal effects present in the wild ojo de gallo plant endemic to the State of Guanajuato in Mexico. For this purpose, the concentration of kaempferol, catechin, and rutin was determined in the wild ojo de gallo grass collected from three different sites in the state of Guanajuato (Comedero Grande, Ex – Hacienda de Márquez, and Tejamanil). The dehydration process of the plant was carried out later to determine the concentration of the metabolites of interest using the high-performance liquid chromatography (HPLC) technique. A statistical analysis was carried out to determine the relationship between the concentration of each metabolite and the various collection sites, also considering the results of the fertility analysis. The results show that the highest concentration for kaempferol was obtained in Ex – Hacienda de Márquez with a value of 24.15 ppm, while for catechin and rutin, it was in Tejamanil reporting values of 26.52 ppm and 46.98 ppm, respectively. The statistical analysis shows no significant difference between Ex -Hacienda de Márquez and Tejamanil for the three metabolites. These results indicate that the site called Comedero Grande favors the presence of kaempferol and rutin while the site called Tejamanil favors the presence of catechin; this opens the possibility of future studies that allow finding the appropriate conditions to maximize the flavonoids of interest in this plant.

Referências

  1. Afrin, S.; Huang, J.; Luo, Z. (2015). A-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci. Bull. 60(12): 1062-1072. https://doi.org/10.1007/s11434-015-0813-0
  2. Awan, A.; Akhtar, T.; Ahmed, M.; Murtaza, G. (2021). Quantitative ethnobotany of medicinal plants used in the Jhelum valley, Azad Kashmir, Pakistan. Acta Ecologica Sinica. 41(2): 88-96. https://doi.org/10.1016/j.chnaes.2020.09.002
  3. Banchero, L.; Carballo, S.; Telesca, J. (2017). Manual de secado solar de especies medicinales y aromáticas para predios familiares. Uruguay: Unidad de comunicación y transferencia de Tecnología del INIA. 54p.
  4. Biblioteca Digital de la Medicina Tradicional Mexicana. (2009). Atlas de las Plantas de la Medicina Tradicional Mexicana. http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=sanvitalia-procumbens
  5. Cai, Z.; Li, X.; Liang, J.; Xiang, L. ; Wang, K. ; Shi, Y. ; Yang, R. ; Shi, M. ; Ye, J. ; Lu, J. ; Zheng, X.; Liang, Y. (2018). Bioavailability of Tea Catechins and Its Improvement. Molecules. 23(9): 2346. https://doi.org/10.3390/molecules23092346
  6. Chang, S.; Ko., Y.; Kim, M. (2023). Regulatory mechanisms of Kaempferol on iNOS expression in RINm5F β-cells under exposure to interleukin-1β. Heliyon. 9(4): E14818. 10.1016/j.heliyon.2023.e14818
  7. CONABIO - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2019). Informe CONABIO 2017-2019. https://www.gob.mx/conabio
  8. Domínguez-Barradas, C.; Cruz-Morales, G.; González Gándara C. (2015). Plantas de uso medicinal de la Reserva Ecológica "Sierra de Otontepec", municipio de Chontla, Veracruz, México. Ciencia UAT. 9(2): 41-52.
  9. Gong, J.; Pan, X.; Zhou, X.; Zhu, F. (2023). Dietary quercetin protects Cherax quadricarinatus against white spot syndrome virus infection. Journal of Invertebrate Pathology. 198: 107931. https://doi.org/10.1016/j.jip.2023.107931
  10. Gu, L.; Li, Z.; Zhang, X.; Chen, M.; Zhang, X. (2023). Identification of MAP Kinase Kinase 3 as a protein target of Myricetin in non-small cell lung cancer cells. Biomedicine & Pharmacotherapy. 161(114460). https://doi.org/10.1016/j.biopha.2023.114460
  11. Hou, Y.; Ding, T.; Guan, Z.; Wang, J.; Yao, R.; Yu, Z.; Zhao, X. (2023). Untargeted metabolomics reveals the preventive effect of Quercetin on nephrotoxicity induced by four organophosphorus pesticide mixtures. Food and Chemical Toxicology. 175(113747). https://doi.org/10.1016/j.fct.2023.113747
  12. Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Dizaj, S. (2020). Molecular mechanisms of anticancer effect of Rutin. Phytotherapy Research. 35(5): 2500-2513. https://doi.org/10.1002/ptr.6977
  13. Jia, Y.; Yan, X.; Huang, Y.; Zhu, H.; Qi, B.; Li, Y. (2022). Different interactions driving the binding of soy proteins (7S/11S) and flavonoids (quercetin/rutin): Alterations in the conformational and functional properties of soy proteins. Food Chemistry. 396(133685). https://doi.org/10.1016/j.foodchem.2022.133685
  14. Julsrigival, J.; Sirisa-ard, P.; Julsrigival, S.; Akarchariya, N. (2021). Antiviral medicinal plants found in Lanna traditional medicine. Chinese Herbal Medicines. 13(4): 494-501. https://doi.org/10.1016/j.chmed.2021.09.006
  15. Li, Y.; Yu, C.; Li, X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.; Zhu, F. (2018). Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 46(D1): D1121-D1127. https://doi.org/10.1093/nar/gkx1076
  16. Mechaala, S.; Bouatrous, Y.; Adouane, S. (2022). Traditional knowledge and diversity of wild medicinal plants in El Kantara's area (Algerian Sahara gate): An ethnobotany survey. Acta Ecologica Sinica. 42(1): 33-45. https://doi.org/10.1016/j.chnaes.2021.01.007
  17. Michel, O.; Szlasa, W.; Baczynzka, D.; Saczko, J.; Terek, M.; Kulbacka, J. (2022). The role of catechin in electroporation of pancreatic cancer cells - Effects on pore formation and multidrug resistance proteins. Bioelectrochemistry. 147: 108199. https://doi.org/10.1016/j.bioelechem.2022.108199
  18. Moore, W.; Luo, J.; Liu, D. (2023). Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. Food Science and Human Wellness. 12. 2087-2094. https://doi.org/10.1016/j.fshw.2023.03.028
  19. Nie, N.; Li, Z.; Li, W.; Huang, X.; Jiang, Z. ; Shen Y. (2023). Myricetin ameliorates experimental autoimmune myocarditis in mice by modulating immune response and inhibiting MCP-1 expression. European Journal of Pharmacology. 942(5): 175549. https://doi.org/10.1016/j.ejphar.2023.175549
  20. United Nations (2023). Sustainable Development Goals “Ensure healthy lives and promote well-being for all at all ages”. https://sdgs.un.org/goals/goal3
  21. Pan, H.; He, J.; Yang, Z.; Yao, X.; Zhang, H.; Li, R.; Xiao, Y.; Zhao, C.; Jiang, H.; Liu, Y.; Li, Z.; Gui, B.; Zhang, C.; Li, R.; Liu, L. (2023) Myricetin possesses the potency against SARS-CoV-2 infection through blocking viral-entry facilitators and suppressing inflammation in rats and mice. PHYTOmedicine. 116(154858). https://doi.org/10.1016/j.phymed.2023.154858
  22. Rai, A.; Saito, K.; Yamazaki, M. (2017). Integrated omics analysis of specialized metabolism in medicinal plants. The Plant Journal. 90: 764–787. https://doi.org/10.1111/tpj.13485
  23. Rivas, C.; Oranday, A.; Verde, M. (2016). Investigación en plantas de importancia médica. Omnia Science. 1: 1-40. 10.3926/oms.313
  24. Ribeiro, L.; Delello, L.; Lobato, J.; Tavares, M.; Miguel. R.; Chorilli, M. (2023). Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells. Colloids and Surfaces B: Biointerfaces. 226(113309). https://doi.org/10.1016/j.colsurfb.2023.113309
  25. Sakanaka, S.; Tachibana, Y.; Okada, Y. (2005). Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chemistry. 89(4): 569-575. https://doi.org/10.1016/j.foodchem.2004.03.013
  26. Sengupta, P.; Das, D.; Bhattacharya, S.; Sur, R.; Bose, A.; Sen, K. (2023). A pH-driven method for liposomal encapsulation of dietary flavonoid rutin: Sustained release and enhanced bioefficacy. Food Bioscience. 52(102392). https://doi.org/10.1016/j.fbio.2023.102392
  27. Wasana, K.; Attanayake, A.; Arawwawala, L. (2022). Ethnobotanical survey on medicinal plants used for the treatment of diabetes mellitus by Ayurveda and traditional medicine practitioners in Galle district of Sri Lanka. European Journal of Integrative Medicine. 55(102177). https://doi.org/10.1016/j.eujim.2022.102177
  28. Willian de Alencar, E.; Costa, V.; Alves de Fonseca, E.; Mendoca, R.; Cardoso, R.; Martins, E.; Penha, S.; Alves, C.; De Souza, A.; Lima, L. (2023). Antimicrobial effect of Quercetin against Streptococcus pneumoniae. Microbial Pathogenesis. 180(106119). https://doi.org/10.1016/j.micpath.2023.106119
  29. Yilmaz, A.; Alibas, I. (2022). Utilizing of the Common Dehydrating Techniques to obtain maximum benefit from the Protein and mineral Composition of rosemary leaves for Spice and Herbal Tea Production. Plant Foods Hum Nutr. 77: 474–480.
  30. https://doi.org/10.1007/s11130-022-00990-3
  31. Zare, M.; Noruzi, M. (2023). Construction, characterization and biological applications of catechinturkey tail polysaccharide-folic acid magnetic nanoparticles. South African Journal of Botany. 158: 49-55. https://doi.org/10.1016/j.sajb.2023.05.001

Downloads

Não há dados estatísticos.