Antimicrobial and molecular resistance profiles of bacterial isolates from poultry production environment
DOI:
https://doi.org/10.22267/rcia.20244103.240Palavras-chave:
animal health, food safety, multidrug-resistant, poultry farming, strains, 16S rRNAResumo
Poultry farming is a relevant industry in Brazil, providing essential animal protein. However, such commercial activity faces significant challenges from bacterial-based diseases, which can impact both animal health and quality product. In this context, this study aimed to identify bacterial strains and evaluate their antimicrobial resistance profiles in poultry farms in southern Tocantins, Brazil. Samples were collected from different stages of poultry production, and the antimicrobial susceptibilities were assessed through antibiogram tests, where bacterial isolates were exposed to 17 antibiotics commonly used in bacterial infection treatment. Bacterial isolates were identified by 16S rRNA gene sequencing, and phylogenetic analysis was used to group them based on genetic similarities. Five isolates were identified: Glutamicibacter creatinolyticus (IGA1), Enterococcus gallinarum (IGA2), Enterobacter mori (IGA3), Lysinibacillus fusiformis (IGA4), and Enterococcus faecalis (IGA5). Antibiotic susceptibility tests revealed significant variations in resistance profiles, with some isolates exhibiting multidrug-resistant (MDR) phenotypes. IGA1 was classified as multidrug-resistant, showing resistance to imipenem, meropenem, ceftazidime, trimethoprim, and doxycycline. IGA2 exhibited resistance to β-lactam antibiotics, including ceftazidime, cefepime, doxycycline, imipenem, meropenem, piperacillin-tazobactam, and tetracycline. IGA3 was resistant to aztreonam and trimethoprim, while IGA4 showed resistance to ceftazidime and cefepime but sensitivity to ciprofloxacin and linezolid. IGA5 did not show resistance to any of the tested antimicrobials. Collectively, our findings highlight bacterial diversity and antibiotic resistance in poultry fams, reinforcing the need for continuous monitoring and effective antimicrobial control strategies to promote animal health, ensure food safety, and prevent the transmission of multidrug-resistant bacteria to humans.
Downloads
##plugins.generic.paperbuzz.metrics##
Referências
ABPA. Associação Brasileira de Proteína Animal (2022). Dados e estatísticas. https://abpa-br.org/wp-content/uploads/2023/01/abpa-relatorio-anual-2022.pdf
Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology. 215(3): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Arbab, S.; Ullah, H.; Wei, X.; Wang, W.; Ahmad, S. U.; Zhang, J. (2021). Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β–Lactam resistance Phenotypes from Shandong province China. Brazilian Journal of Biology. 83: e247061. https://doi.org/10.1590/1519-6984.247061
Baynes, R. E.; Dedonder, K.; Kissell, L., Mzyk, D.; Marmulak, T.; Smith, G.; Riviere, J. E. (2016). Health concerns and management of select veterinary drug residues. Food and Chemical Toxicology. 88: 112-122. https://doi.org/10.1016/j.fct.2015.12.020
Berghiche, A.; Khenenou, T.; Labiad, I. (2018). Antibiotics resistance in broiler chicken from the farm to the table in Eastern Algeria. Journal of World's Poultry Research. 8(4): 95-99.
CLSI. (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, PA: CLSI supplement M100. 416p.
Cole, J. R.; Wang, Q.; Fish, J. A.; Chai, B.; McGarrell, D. M.; Sun, Y.; Tiedje, J. M. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research. 42(D1): D633-D642. https://doi.org/10.1093/nar/gkt1244
Davin-Regli A.; Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in microbiology. 6: 392. 10.3389/fmicb.2015.00392.
Deusdará, T. T.; Felix, M. K. C.; Brito, H. S.; Ribeiro, D. R.; Cangussu, E. W. S.; Albuquerque, B.; Santos, G. R.; Chaves, J. R.; Carvalho, W. C. R.; Astolfi-Filho, S.; Assunção, E. N.; Mariúba, L. A. M.; Nogueira, P. A.; Viana, K. F.; Brandi, I. V.; Cangussu, A. S. R. (2023). Resistance determinants of emerging pathogens isolated from an intensive care unit as a parameter of population health conditions of the Legal Amazon microregion. Brazilian Journal of Biology. 83: e269778. https://doi.org/10.1590/1519-6984.269778
EMBRAPA. (2021). Doenças. https://www.embrapa.br/agencia-de-informacao-tecnologica/criacoes/frango-de-corte/producao/sanidade/doencas
Fardsanei, F.; Dallal, M. M. S.; Douraghi, M.; Salehi, T. Z.; Mahmoodi, M.; Memariani, H.; Nikkhahi, F. (2017). Genetic diversity and virulence genes of Salmonella enterica subspecies enterica serotype Enteritidis isolated from meats and eggs. Microbial pathogenesis. 107: 451-456. https://doi.org/10.1016/j.micpath.2017.04.026
Gomes, A. V. S.; Silva, V. N.; Silva, M. C. (2019). Principais enfermidades em avicultura e suas implicações na qualidade do produto. Brazilian Journal of Development. 5(7): 12145-12157.
Gutarowska, B.; Szulc, J.; Nowak, A.; Otlewska, A.; Okrasa, M.; Jachowicz, A.; Majchrzycka, K. (2018). Dust at various workplaces—Microbiological and toxicological threats. International Journal of Environmental Research and Public Health. 15(5): 877. https://doi.org/10.3390/ijerph15050877
Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R. L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Wolska, L. (2023). Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment. 858: 160014. https://doi.org/10.1016/j.scitotenv.2022.160014
Hou, X. G.; Kawamura, Y.; Sultana, F.; Shu, S.; Hirose, K.; Goto, K.; Ezaki, T. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. International Journal of Systematic and Evolutionary Microbiology. 48(2): 423-429. 10.1099/00207713-48-2-423
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution. 35(6): 1547-1549. 10.1093/molbev/msy096
Lateef, A.; Adelere, I. A.; Gueguim-Kana, E. B (2015). The biology and potential biotechnological applications of Bacillus safensis. Biologia. 70(4): 411-419. https://doi.org/10.1515/biolog-2015-0062
Magiorakos, A. P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M. E.; Giske, C. G.; Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 18(3): 268-281. 10.1111/j.1469-0691.2011.03570.x
Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 23(4): 795. https://doi.org/10.3390/molecules23040795.
Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. (2018). Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. Journal of Infection and Chemotherapy. 24(4): 237-246. 10.1016/j.jiac.2018.01.001
Moyane, J. N.; Jideani, A. I. O.; Aiyegoro, O. A. (2013). Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. Afr. J. Microbiol. Res. 7(24): 2990-2997. https://doi.org/10.5897/AJMR2013.5631
Moretto, V. T.; Bartley, P. S.; Ferreira, V. D. M.; Santos, C. S.; Silva, L. K.; Ponce-Terashima, R. A.; Barbosa, L. M. (2021). Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Brazilian Journal of Biology. 82: e231838. https://doi.org/10.1590/1519-6984.231838
Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems. 187: 103016. https://doi.org/10.1016/j.agsy.2020.103016.
Pereira, V. C.; Romero, L. C.; Pinheiro-Hubinger, L.; Oliveira, A.; Martins, K. B.; Cunha, M. L. R. S. (2020). Coagulase-negative staphylococci: a 20-year study on the antimicrobial resistance profile of blood culture isolates from a teaching hospital. Brazilian Journal of Infectious Diseases. 24: 160-169. 10.1016/j.bjid.2020.01.003
Reid K. C.; Cockerill III F. R.; Patel R. (2001). Clinical and Epidemiological Features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum Bacteremia: A Report of 20 Cases. Clinical Infectious Diseases. 32: 1540– 1546. 10.1086/320542
Ruoff, K. L.; De La Maza, L.; Murtagh, M. J.; Spargo, J. D.; Ferraro, M. J. (1990). Species identities of enterococci isolated from clinical specimens. Journal of Clinical Microbiology. 28(3): 435-437. 10.1128/jcm.28.3.435-437.1990
Sanger, F.; Nicklen, S.; Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 74(12): 5463-5467. 10.1073/pnas.74.12.5463
Santos, R. G.; Hurtado, R.; Gomes, L. G. R.; Profeta, R.; Rifici, C.; Attili, A. R.; Azevedo, V. (2020). Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene. 741: 144566. 10.1016/j.gene.2020.144566
Wenzler, E.; Kamboj, K.; Balada-Llasat, J. M (2015). Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus bacteremia. International Journal of Infectious Diseases. 35: 93-95. 10.1016/j.ijid.2015.04.016
Wilberger, M. S.; Anthony, K. E.; Rose, S. McClain, M.; Bermudez, L. E. (2012). Beta-lactam antibiotic resistance among Enterobacter spp. isolated from infection in animals. Advances in Microbiology. 2: 129-137. 10.4236/aim.2012.22018
Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. (2013). Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob. Agents. 41(1): 11-19. https://doi.org/10.1016/j.ijantimicag.2012.09.008
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista de Ciencias Agrícolas
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.