Síntesis de biocarbón a partir de residuos de phaseolus vulgaris l. para un sistema de filtración de agua potenciado con nanopartículas de plata.
DOI:
https://doi.org/10.22267/huellas.251121.25Keywords:
bean, activated carbon, solid waste, sustainability, environmental, filtration, water.Abstract
The effective management of solid waste is paramount to safeguarding our environment and ensuring a sustainable future. Globally, the agricultural sector significantly contributes to soil and water pollution, despite its substantial contribution to the global Gross Domestic Product (GDP), particularly in developing countries like Ecuador. Agricultural waste generated post-production is often inadequately managed and underutilized during processing and product collection. This study focuses on obtaining activated carbon from bean pod residues (Phaseolus Vulgaris L.) and its application for water purification. To obtain activated carbon, bean pods were collected, subjected to carbonization and chemical activation with phosphoric acid (H3PO4) at 700°C, followed by washing. Samples were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD). A preliminary gravimetric analysis was conducted to assess the technical feasibility of the process. Furthermore, the properties of activated carbon were enhanced by integrating silver nanoparticles (NPs-Ag), thereby increasing its effectiveness in contaminant removal and bactericidal activity. This enhanced activated carbon was employed in water microbiological analysis filters, resulting in a pH reduction from 8.2 to 7.45 and a 70% decrease in microorganisms. The efficiency of activated carbon extraction reached 63.83%; however, process optimization was identified as necessary. Notably, the most promising results in water purification were observed with the incorporation of silver nanoparticles. These findings support the viability of a sustainable solution to address agricultural waste management challenges and improve access to clean water in vulnerable communities.
Downloads
References
Aylwin Ríos, C. (2017). Evaluación de un plan de gestión de residuos sólidos domiciliarios en la comuna de Cochamó, ingeniería conceptual. https://repositorio.uchile.cl/handle/2250/150305.
Badi’ah, H. I., Seedeh, F., Supriyanto, G., & Zaidan, A. H. (2019). Synthesis of Silver Nanoparticles and the Development in Analysis Method. IOP Conference Series: Earth and Environmental Science, 217(1), 012005. https://doi.org/10.1088/1755-1315/217/1/012005.
Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., & Belver, C. (2020). Review on Activated Carbons by Chemical Activation with FeCl3. C, 6. https://doi.org/10.3390/c6020021.
Bridgewater, L. L., Baird, R. B., Eaton, A. D., Rice, E. W., American Public Health Association, American Water Works Association, & Water Environment Federation (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition). American Public Health Association.
De León Duarte, M. (2022). Retos en la gestión y valorización de los residuos en Canarias. Un paso hacia la economía circular. https://riull.ull.es/xmlui/handle/915/26738.
Demiral, H., & Demiral, İ. (2018). Preparation and characterization of carbon molecular sieves from chestnut shell by chemical vapor deposition. Advanced Powder Technology, 29(12), 3033-3039. https://doi.org/10.1016/j.apt.2018.07.015.
El-Aassar, A. H. M., Said, M. M., Abdel-Gawad, A. M., & Shawky, H. A. (2013). Using Silver Nanoparticles Coated on Activated Carbon Granules in Columns for Microbiological Pollutants Water Disinfection in Abu Rawash area, Great Cairo, Egypt.
Evwierhoma, E. T., Madubiko, O. D., & Jaiyeola, A. (2018). Preparation and characterization of activated carbon from bean husk. Nigerian Journal of Technology, 37(3), Article 3. https://doi.org/10.4314/njt.v37i3.17.
Ghaedi, M., Biyareh, M. N., Kokhdan, S. N., Shamsaldini, S., Sahraei, R., Daneshfar, A., & Shahriyar, S. (2012). Comparison of the efficiency of palladium and silver nanoparticles loaded on activated carbon and zinc oxide nanorods loaded on activated carbon as new adsorbents for removal of Congo red from aqueous solution: Kinetic and isotherm study. Materials Science and Engineering: C, 32(4), 725-734. https://doi.org/10.1016/j.msec.2012.01.015.
Kalagatur, N., Karthick, K., Joseph Anthuvan, A., Ghosh Ph.D., O. S. N., Nayak, C., Gupta, V. K., Krishna, K., & Mudili, Dr. V. (2017). Application of Activated Carbon Derived from Seed Shells of Jatropha curcas for Decontamination of Zearalenone Mycotoxin. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00760.
Kra, D. O., Allou, N. B., Atheba, P., Drogui, P., & Trokourey, A. (2019). Preparation and Characterization of Activated Carbon Based on Wood (Acacia auriculeaformis, Côte d’Ivoire). Journal of Encapsulation and Adsorption Sciences, 9(2), Article 2. https://doi.org/10.4236/jeas.2019.92004.
Mota Muñoz, S. del C., & Espinoza Rosales, A. D. (2019). Caracterizacion y evaluacion preliminar de cuatro variedades locales de frijol comun (Phaseolus vulgaris L.) en las localidades Tamalapa, El Mojon, El Cristal y el Guineo del municipio Ciudad Dario, departamento Matagalpa postrera 2017—Primera 2018 [Engineer, Universidad Nacional Agraria]. https://repositorio.una.edu.ni/3939.
Mulfinger, L., Solomon, S. D., Bahadory, M., Jeyarajasingam, A. V., Rutkowsky, S. A., & Boritz, C. (2007). Synthesis and Study of Silver Nanoparticles. Journal of Chemical Education, 84(2), 322. https://doi.org/10.1021/ed084p322.
Nartey, O. D., & Zhao, B. (2014). Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering, 2014, e715398. https://doi.org/10.1155/2014/715398.
Pastor, A. C., Rodrıguez-Reinoso, F., Marsh, H., & Martınez, M. A. (1999). Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures. Carbon, 37(8), 1275-1283.
Poornima Parvathi, V., Umadevi, M., Sasikala, R., Parimaladevi, R., Ragavendran, V., Mayandi, J., & Sathe, G. V. (2020). Novel silver nanoparticles/activated carbon co-doped titania nanoparticles for enhanced antibacterial activity. Materials Letters, 258, 126775. https://doi.org/10.1016/j.matlet.2019.126775.
Porras, Á. C., & González, A. R. (2016a). Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica. Academia y Virtualidad, 9(2), Article 2. https://doi.org/10.18359/ravi.2004.
Reina Orosco, P. S. (2015). La sostenibilidad social del plan del manejo de residuos sólidos del municipio de Concepción, Junín. Universidad Nacional del Centro del Perú. http://repositorio.uncp.edu.pe/handle/20.500.12894/4584.
Salgado Ortiz, G. S. (2020). Valorización energética de residuos agrícolas: Cáscara de plátano, cascarilla de arroz y bagazo de caña mediante procesos de biodigestión y combustión [bachelorThesis, Quito, 2020.]. http://bibdigital.epn.edu.ec/handle/15000/20707.
Sodha, K., Jadav, J., Gajera, H., & Rathod, K. (2015). CHARACTERIZATION OF SILVER NANOPARTICLES SYNTHESIZED BY DIFFERENT CHEMICAL REDUCTION METHODS. International Journal of Pharma and Bio Sciences, 6, 199-208.
Torres Navarrete, E., Quisphe Caiza, D., Sánchez Laiño, A., Reyes Bermeo, M., González Osorio, B., Torres Navarrete, A., Cedeño Briones, A., & Haro Chong, A. (2013). Caracterización de la producción de Frijol en la provincia de Cotopaxi Ecuador: Caso Comuna Panyatug. Revista Ciencia y Tecnología, 6(1), 23-31.
Ukanwa, K. S., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability, 11(22), Article 22. https://doi.org/10.3390/su11226204.
Vega Alonso, C. (2019). Estudio comparativo económico y ambiental de la gestión de RSU en vertedero e incineración. https://idus.us.es/handle/11441/101403.
Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., & Xing, G. (2014). Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Applied Surface Science, 320, 674-680. https://doi.org/10.1016/j.apsusc.2014.08.178.
Zięzio, M., Charmas, B., Jedynak, K., Hawryluk, M., & Kucio, K. (2020). Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V). Applied Nanoscience, 10(12), 4703-4716. https://doi.org/10.1007/s13204-020-01419-6.