Determination of conditions for protease encapsulation by electrospray

Authors

  • Yessica Lorena Díaz M. Universidad La Gran Colombia
  • Johanna A Serna J. Universidad La Gran Colombia
  • Laura Sofía Torres V. Universidad La Gran Colombia

DOI:

https://doi.org/10.22267/rcia.163301.1

Keywords:

Compuestos bioactivos, electrohilado, inmovilización de enzimas, microencapsulación.

Abstract

Encapsulation is a method by which bioactive substances are introduced into a matrix to prevent their loss and also facilitate their incorporation into various products; notwithstanding, during this process, it is necessary to take into account technical and process conditions so as to achieve the formation of capsules. The objective of this research was to determine the appropriate conditions for protease encapsulation by electrospray. The process was evaluated according to the independent variables: voltage, concentration of coating material and feeding flow, in addition to dependent variables: spectral characteristics and morphology. In the obtained particles, morphological characteristics (microscopy) and specter (Raman) were measured. The results showed that the conditions allowing the encapsulation by electrospray were those performed at a voltage of 13kW, using a coating material with a contribution of total soluble solids 55%, and a feeding flow of 0.1mL/h, showing formation of spherical capsules with specters (Raman) in the range of 200 to 700 cm-1, observing the highest peak, corresponding to the enzyme at 515cm-1 and sizes between 0.035 and 1.185μm. From the results, is concluded that the electrospray may be considered as a viable technique for encapsulation of
protease enzyme, provided that process conditions specific to each solution are established, thereby enabling the development of products (additives) which may be subsequently incorporated into other ones.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

BOCK, N.; DARGAVILLE, T.R.; WOODRUFF, M.A. 2012. Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci. . 37(11):1510 - 1551. doi:10.1016/j.progpolymsci.2012.03.002.

CRUZADO, M.; CEDRÓN. J.C. 2012. Nutracéuticos, alimentos funcionales y su producción. Rev. Quím. PUCP. 26(1-2):33 - 36.

DUQUE-, L.M.; RODRIGUEZ, L.; LÓPEZ, M. 2013. Electrospinning: La era de las nanofibras. Rev. Iberoam. Polim. 14(1):10 - 27.

FATHI, M.; MARTÍN, Á.; McCLEMENTS, D.J. 2014. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 39(1): 18 - 39. doi:10.1016/j.tifs.2014.06.007

GAMBOA, W.; MANTILLA, O.; CASTILLO, V. 2007. Producción de micro y nano fibras a partir de la técnica "Electrospinning" para aplicaciónes farmacológicas. pp. 4. En: Memorias VII Congreso Sociedad Cubana de Bioingeniería. Habana, Cuba.

GÓMEZ, J.; GAVARA, R.; HERNÁNDEZ, P. 2015. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov. Food Sci. Emerg. Technol. 29:301 - 307. doi:10.1016/j.ifset.2015.03.004

GÓMEZ-, L.G.; LAGARÓN, J.M.; LÓPEZ, A. 2015. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll. 49: 42 - 52. doi:10.1016/j.foodhyd.2015.03.006

GIL, A.; RUIZ, M.D. 2010. Tratado de Nutrición: Composición y Calidad Nutritiva de los Alimentos. Segunda edición. Editorial Medica Panamericana. Madrid, España, 812 p.

LÓPEZ, O.D. 2010. Microencapsulación de sustancias oleosas mediante secado por aspersión. Rev. Cubana Farm. 44(3):381 - 389.

MESA, F.A.; CUÉLLAS, A.; PERILLA, J.E.; VARGAS, C. 2013. Caracterización de los monómeros DGEBA y TMAB, y seguimiento de la reacción de entrecruzamiento por espectroscopia Raman. Ingeniare. Rev. Chil. Ing. 21(3):414 - 423.

NEDOVIC, V.; KALUSEVIC, A.; MANOJLOVIC, V.; LEVIC, S.; BUGARSKI, B. 2011. An overview of encapsulation technologies for food applications. Procedia Food Sci. 1:806 - 1815. doi:10.1016/j.profoo.2011.09.265

OLAGNERO, G.; ABAD, A.; BENDERSKY, S.; GENEVOIS, C.; GRANZELLA, L.; MONTONATI, M. 2007. Alimentos funcionales: fibra, prebióticos, probióticos y simbióticos. DIAETA. 25(121):20 - 33

OLAGNERO, G.; GENEVOIS, C.; IREI, V.; MARCENAD, J.; BENDERSKY, S. 2007. Alimentos funcionales: Conceptos, Definiciones y Marco Legal Global. DIAETA. 25(119):33 - 41

PÉREZ, R.; LÓPEZ, R.; PERIAGO, M.J.; ROS, G.; LAGARÓN, J, M.; LÓPEZ, A. 2015. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 168:124 - 133. doi: dx.doi.org/10.1016/j.foodchem.2014.07.051

SAALLAH, S.; NAIM, M.N.; MOKHTAR, M.N.; ABU-BAKAR, N.F.; GEN, M.; LENGGORO, I.W. 2014. Transformation of cyclodextrin glucanotransferase (CGTase) from aqueous suspension to fine solid particles via electrospraying. Enzyme Microb. Technol. 64 - 65: 52 -59. doi:10.1016/j.enzmictec.2014.06.002

ZAMANI, M.; PRABHAKARAN, M.P.; THIAN, E.S.; RAMAKRISHNA, S. 2014. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: Investigation on material and processing variables. Int. J. Pharm. 473(1-2):134 - 143. doi:10.1016/j.ijpharm.2014.07.006.

Published

2016-08-18

How to Cite

Díaz M., Y. L., Serna J., J. A., & Torres V., L. S. (2016). Determination of conditions for protease encapsulation by electrospray. Revista De Ciencias Agrícolas, 33(1), 3–8. https://doi.org/10.22267/rcia.163301.1