Genotypic, phenotypic and environmental correlations in 81 genotypes of tomato tree (Cyphomandra betacea Cav. Sendt.)

  • David Esteban Duarte A.
  • Tulio Cesar Lagos B.
  • Liz Katherine Lagos S.
Keywords: path analysis, direct effects, indirect effects

Abstract

This research was carried out to evaluate different components of fruit quality, to estimate phenotypic, genetic and environmental correlations in tree tomato (Cyphomandra betacea), considering 14 variables related to fruit size and quality, and to establish direct and indirect effects of traits related to fruit weight. Data of 81 hybrids with two replications were taken account of, in the municipality of Pasto, Colombia. The results indicated that genotypic correlations were higher than phenotypic and environmental ones. Fruit weight (FW) showed the highest genetic correlations (rG 0.60), with more pulp and seed weight (rG 0 0.90) and equatorial diameter (rG = 0.84). Path analysis based on genotypic correlations showed that internal thickness (EI) was the variable that had the greatest direct effect(1.63) demonstrating that a selection on the basis of fruit weight will result in an increase of the internal thickness. Taking into account the phenotypic correlations, it was established by analysis that the direct effects of equatorial diameter(DE) and polar diameter (DP), (0.30) and (0.26) respectively are the major contributors to fruit weight (PF).

Downloads

Download data is not yet available.

References

AGROCADENAS. 2008. Análisis - Estadísticas. En línea. 2008. Disponible en . Consulta: 1 de marzo de 2011.

ARAMENDIZ, H. CARDONA, C. ESPITIA, M. CADENA, J. y CORREA, E. 2008. Correlaciones fenotípicas, ambientales y genéticas en Berenjena. Universidad de Córdoba, Facultad de Ciencias Agrícolas. Montería -Colombia. 15 p.

BERNAL J. y DÍAZ, C. 2003. Tecnología para el Cultivo de tomate de árbol. Corpoica. Manual Técnico 3., Rio Negro, Antioquia. p. 12-20.

CRUZ, C. 2006. Programa GENES. Versão Windows. Aplicativo Computacional em Genética e Estatística. Editora UFV. Universidade Federal de Viçosa. Disponible en:www.ufv.br/dbg/genes/genes.htm.Consulta: 12 de Marzo de 2011.

CRUZ, C. 2001. Programa genes. Versao Windows. Aplicativo computacional em genética e estatística. Ediciones Universidade Federal de Vicosa. Vicosa, MG, Brasil. 648 p.

CRUZ, C. REGAZZI, C.1997. Modelos biométricos aplicados aomelhoramento genético. 2ª ed. Ediciones Universidade Federal de Vicosa. Vicosa, MG, Brasil. 390 p.

DE CARVALHO, C. RODRIGUES, V. CRUZ, C. DIAS, V. 1999. Analise de trilhasobmulticolinearidade em pimentão. Pesquisa Agropec. Brás. 34(4):603-613.

ESPITIA, M. ARAMENDIZ, H. CADENA, J. 2008. Correlaciones y Análisis de sendero en Algodón Gossypiumhirsutum L. en el Caribe Colombiano. Revista Facultad Nacional de Agronomía – Medellín, Vol. 61. No. 1. Universidad Nacional de Colombia 4325- 4335 p.

FALCONER, D. MACKAY, T. 1996.Introduction to quantitative genetics.4th edition.Prentice Hall, New Jersey, USA, 464 p.

GALVIS, A. 1992. Tecnología de manejo de postcosecha de frutas y hortalizas: Sección de vegetales. Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia. Bogota. p. 12-14.

HALLAUER, A.MIRANDA, J. 1981. Quantitative genetics in maize breeding.Lowa State University Press, Ames, IA, 468 p.

ICONTEC. INSTITUTO COLOMBIANO DE NORMAS TECNICAS. 1997. Norma técnica Colombiana NTC 4105: Frutos frescos. Tomate de árbol. Especificaciones. Bogotá, ICONTEC. CENICAFE. 15p.

INGALE, B. PATIL, S. 1995. Correlations and path analysis in brinjal.Indian J. Hort. 52(1):55-59.

KEMPTHORNE, O. Y CURNOW, R.N. 1961. The partial diallel cross. Biometrics.17: 229-250.

LENTINI, Z. 2001. Conservación y Transformación Genética de Lulo (Solanum quitoense) y Tomate de Árbol (Cyphomandra betacea). CIAT-centro Internacional de Agricultura Tropical. Valle del Cauca. Colombia. 24 p.

LOBO, M. 2001. Tomate de árbol (Cyphomandra betacea Sendt), frutal promisorio para la diversificación del agro andino. FONTAGRO, Colombia. Disponible en: http://agris.fao.org/agrissearch/search/display.do?f=2008/EC/EC0801.xml;EC2007000309. Citado 1 Junio, de 2011.

MARIOTTI, J. 1986. Fundamentos de genética biométrica. Aplicaciones al mejoramiento genético vegetal. Secretaría General de la Organización de los Estados Americanos, Washington, D. C. 152 p.

MAYO, O. 1980.The theory of plant breeding.Oxford University. Clarendon Press. 293p.

SEARLE, S. 1961. Phenotypic, Genetic and environmental correlations. Biometrics 22:187-191.

SINGH, R. y CHAUDHARY, D. 1985. Biometrical Methods in quantitative Genetic Analysis.PathAnalysis.New Delhi, Ludhiana.78 p.

VALLEJO, F., ESPITIA, M., ESTRADA, E., RAMIREZ, H. 2011. Genética Vegetal. Correlaciones Fenotípicas, Genéticas y Ambientales. Universidad Nacional de Colombia. Sede Palmira. 294-304 p.

VENCOVSKY, R. y BARRIGA, P. 1992. Genética biométrica no fitomelhoramento. Sociedad Brasileira de Genética, Brasil. 496 p.

WRIGHT, S. 1921. Correlations and causation.J.Agr. Res. 20:557-585.

Published
2013-02-27
How to Cite
Duarte A., D., Lagos B., T., & Lagos S., L. (2013). Genotypic, phenotypic and environmental correlations in 81 genotypes of tomato tree (Cyphomandra betacea Cav. Sendt.). Revista De Ciencias Agrícolas, 29(2), 57-80. Retrieved from http://revistas.udenar.edu.co/index.php/rfacia/article/view/457
Section
Research and scientific and technological innovation article