Biomass of fine roots in agroforestry arrangements with cocoa in the western Colombian Amazon

Authors

DOI:

https://doi.org/10.22267/rcia.183501.80

Keywords:

Agroforestry, theobroma, root system, apparent density, soil.

Abstract

The agroforestry arrangements with cocoa have a diversified structure, which influences the behavior of fine roots, whose distribution is influenced by different cultural practices. The objective of the present work was to study the distribution, the contribution of biomass of fine roots in relation to the apparent density and the percentage of humidity in agroforestry arrangements with cocoa in the CIMAZ Macagual Research Center (1°37'LN and 75°36'LW). The sampling was developed in three agroforestry arrangements with cocoa classified in intense shade, semi-shade and full sun. For the extraction of the biomass of roots the cylinder of known volume was used every 10cm until reaching 1m of depth. The fine roots were extracted through a mesh size <2mm. There were significant statistical differences between the array-depth interaction for the variable root biomass (<0.001) with a positive correlation (0.26) between weight and bulk density. The highest accumulation of root biomass occurred between the first 20 cm of depth in the three systems studied, where the apparent density increases in the different soil profiles; in turn, the gravimetric humidity was greater in the agroforestry arrangements than in cocoa in full sun, showing significant differences (P<0.001) with a negative correlation (-0.75) in terms of the depths. In this sense, agroforestry systems favor the availability of water in the first soil profiles, increasing the presence of fine roots.

Downloads

Download data is not yet available.

References

Bakker, E. G., Stahl, E. A., Toomajian, C., Nordborg, M., Kreitman, M. & Bergelson, J. (2006). Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Molecular Ecology. 15(5): 1405-1418. doi: 10.1111/j.1365-294X.2006.02884.x.

Barreto, L.H. & León, J.D. (2005). Masa total y contenido de nutrientes en raíces finas de ecosistemas forestales (Pinus patula Schltdl y Cham., Cupressus lusitánica Mill. Y Quercus humboldtii Bonpl.) de Piedras Blancas, Antioquia-Colombia. Rev. Fac. Nal. Agr. (58): 2907-2929.

Bassoi, L. H., Hopmans, J. W., Jorge, L. A. & Alencar, C. M. (2003). Grapevine root distribution in drip and micro sprinkler irrigation. Scientia Agricola. 60(2): 377-387. doi: http://dx.doi.org/10.1590/S0103-90162003000200024.

Bohm, W. (1979). Methods of studying root systems. Berlin: Springer. 140p.

Bucheli, P., Benjamin, T., Rusch, G. M., Ibrahim, M., Casals, P. & Pugnaire, F. (2013). Estrategias de los árboles en SSP en el uso eficiente del agua y la tolerancia a la sequía, pp. 25 - 30. En: Sánchez, D.; Villanueva, C.; Rusch, G.Ibrahim, M.; DeClerck, F. Estado del Recurso Arbóreo en Fincas Ganaderas y su Contribución en la Sostenibilidad de la Producción en Rivas. Primera edición. Nicaragua. Turrialba, Costa Rica: CATIE. 50p.

Claus, A. & George, E. (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research. 35(7): 1617-1625. doi: https://doi.org/10.1139/x05-079.

Coutts, M. P., Nielsen, C. N. & Nicoll, B. C. (1999). The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant and soil. 217(1-2): 1-15.

Cronan, C. S. (2003). Belowground biomass, production, and carbon cycling in mature Norway spruce, Maine, USA. Canadian Journal of Forest Research. 33(2): 339-350. doi: https://doi.org/10.1139/x02-189

Das, D. K. & Chaturvedi, O. P. (2008). Root biomass and distribution of five agroforestry tree species. Agroforestry systems. 74(3): 223-230. doi: https://doi.org/10.1007/s10457-008-9159-9.

De Carvalho, G. L., Cardoso, I. M., De Sá Mendonça, E., Fernandes, R. B. A., Lopes, V. S. & Oliveira, T. S. (2016). Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agricultural and Forest Meteorology. 224: 30-39. doi: https://doi.org/10.1016/j.agrformet.2016.05.001.

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. (2015). InfoStat versión 2016. Grupo InfoStat, FCA. Argentina: Universidad Nacional de Córdoba.

Dwyer, L. M., MA, B. L., Stewart, D. W., Hayhoe, H. N., Balchin, D., Culley, J. L. B. & Mcgovern, M. (1996). Root mass distribution under conventional and conservation tillage. Canadian Journal of Soil Science. 76(1): 23-28. doi: https://doi.org/10.4141/cjss96-004.

Ehrenbergerová, L., Cienciala, E., Kučera, A., Guy, L. & Habrová, H. (2015). Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agrofor. Syst. 90(3): 433-445. doi: https://doi.org/10.1007/s10457-015-9865-z.

Fabião, A., Madeira, M., Steen, E., Kätterer, T., Ribeiro, C. & Araújo, C. (1995). Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes. Plant and Soil. 168(1): 215-223. doi: https://doi.org/10.1007/978-94-011-0455-5_24.

Gaitán, J. J., Penón, E. A. & Costa, M. C. (2005). Distribución de raíces finas de Eucalyptus globulus ssp. maidenii y su relación con algunas propiedades del suelo. Ciência Florestal. 15(1): 33-41.

George, S., Suresh, P. R., Wahid, P. A., Nair, R. B. & Punnoose, K. I. (2009). Active root distribution pattern of Hevea brasiliensis determined by radioassay of latex serum. Agroforestry systems. 76(2): 275-281. doi: https://doi.org/10.1007/s10457-008-9104-y.

Gill, R. A. & Jackson, R. B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist. 147(1): 13-31.

Gómez, C.A., Leblanc, H. & Nygren, P. (2009). Distribución de raíces finas de Inga edulis y Theobroma cacao en el suelo de un sistema agroforestal orgánico. Tierra Tropical. 5(2): 141-151.

Guiracocha, G., Harvey, C., Somarriba, E., Krauss, U. & Carrillo, E. (2001). Conservación de la biodiversidad en sistemas agroforestales con cacao y banano en Talamanca, Costa Rica. Agroforestería en las Américas. 8(30): 7-11.

Henríquez, C., Ortiz, O., Largaespada, K., Portuguéz, P., Vargas, M., Villalobos, P. & Gómez, D. (2011). Determinación de la resistencia a la penetración, al corte tangencial, densidad aparente y temperatura en un suelo cafetalero, Juan Viñas, Costa Rica. Agronomía costarricense: Revista de Ciencias Agrícolas. 35(1): 175-184.

Hossne, A. & Salazar, J. (2004). Límites de consistencia y sus implicaciones agrícolas en un suelo ultisol de sabana del Estado Monagas de Venezuela. Agronomía Costarricense. 28(1): 69-80.

Huang, G., Zhao, X. Y., Su, Y. G., Zhao, H. L. & Zhang, T. H. (2008). Vertical distribution, biomass, production and turnover of fine roots along a topographical gradient in a sandy shrubland. Plant and soil. 308(1-2): 201-212.

Ingaramo, O., Paz, A. & Dugo, M. (2003). Evaluación de la densidad aparente en diferentes sistemas de laboreos de suelo, en el NO de la Península Ibérica. Argentina: Comunicaciones Científicas y tecnológicas. Universidad Nacional del Nordeste. 4p.

Jones, M., Sinclair, F. L. & Grime, V. L. (1998). Effect of tree species and crown pruning on root length and soil water content in semi-arid agroforestry. Plant and soil. 201(2): 197-207.

Kang, B. W., Liu, J. J., Sun, J. H. & Li, Y. F. (2010). Study on Root Distribution of Artemisa Ordosica in Mu Us Sandy Land. Research of Soil and Water Conservation. 17(4): 119-123. doi: https://doi.org/10.5468/kjog.2010.53.2.119

Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Nakagawa, M., Yamashita, M., Otsuki, K., Suzuki, M. & Kumagai, T. O. (2009). Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology. 149(10): 1666-1673. doi: https://doi.org/10.1016/j.agrformet.2009.05.007.

Ling, Q., Gao, X., Zhao, X., Huang, J., Li, H., Li, L., Sun, W. & Wu, P. (2017). Soil water effects of agroforestry in rainfed jujube (Ziziphus jujube Mill.) orchards on loess hillslopes in Northwest China. Agriculture. Ecosystems & Environment. 247: 343-351. doi: https://doi.org/10.1016/j.agee.2017.06.031.

Ma, L. H., Liu, X. L. & Wang, Y. K. (2013). Effects of drip irrigation on deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant and soil. 373(1-2): 995-1006. doi: https://doi.org/10.1007/s11104-013-1880-0.

Madeira, M. V. A., Melo, M. G., Alexandre, C. A. & Steen, E. (1989). Effects of deep ploughing and superficial disc harrowing on physical and chemical soil properties and biomass in a new plantation of Eucalyptus globulus. Soil and Tillage Research. 14(2): 163-175.

Montagnini, F. & Nair, P.K.R. (2004). Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 61(1-3): 281-295.

Morales, E. & Beer, J. (1998). Distribución de raíces finas de Coffea arabica y Eucalyptus deglupta en cafetales del Valle Central de Costa Rica. Agroforesteria de Las Américas. 5(17/18): 44-48.

Müller, M.W. & Gama-Rodrígues, A.C. (2012). Cacao agroforestry systems. In: Valle, R.R., Science, Technology and Management of Cacao Tree Brasília. CEPLAC/CEPEC. 246 - 271.

Nakahata, R. & Osawa, A. (2017). Fine root dynamics after soil disturbance evaluated with a root scanner method. Plant and Soil. 1-21. doi: https://doi.org/10.1007/s11104-017-3361-3.

Padilla, F. M., De Dios Miranda, J., Armas, C. & Pugnaire, F. I. (2015). Effects of changes in rainfall amount and pattern on root dynamics in an arid shrubland. Journal of Arid Environments. 114: 49-53. doi: https://doi.org/10.1016/j.jaridenv.2014.11.005.

Pinheiro, D. A., Cavero, B. A. S., Vargas, L., Braccini, G. L., Yoshioka, E. T. O., Oliveira, M. S. B. & Tavares-Dias, M. (2015). Performance, parasitic infections, hematology and hepatic histology of Colossoma macropomum (tambaqui) fed on homeopathic product. African Journal of Pharmacy and Pharmacology. 9(4): 82-90. doi: https://doi.org/10.5897/AJPP2014. 4194

Pransiska, Y., Triadiati, T., Tjitrosoedirjo, S., Hertel, D. & Kotowska, M. M. (2016). Forest conversion impacts on the fine and coarse root system, and soil organic matter in tropical lowlands of Sumatera (Indonesia). Forest Ecology and Management. 379, 288-298. doi: https://doi.org/10.1016/j.foreco.2016.07.038.

R Development Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2630p.

Sands, R. & Mulligan, D. R. (1990). Water and nutrient dynamics and tree growth. Forest Ecology and Management. 30(1): 91-111.

Sayer, E. J., Tanner, E. V. J. & Cheesman, A. W. (2006). Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil. 281(1-2): 5-13.

Schaller, M., Schroth, G., Beer, J. & Jiménez, F. (2003). Species and site characteristics that permit the association of fast-growing trees with crops: the case of Eucalyptus deglupta as coffee shade in Costa Rica. Forest Ecology and Management. 175(1): 205-215.

Schenk, H. J. (2008). Soil depth, plant rooting strategies and species’ niches. New Phytologist. 178(2): 223-225.

Sherin, G., Suresh, P., Wahid, P., Nair, R. & Punnoose, K. (2009). Active root distribution pattern of Hevea brasiliensis determined by radioassay of latex serum. Agroforest Syst. 76:275–281. doi: https://doi.org/10.1007/s10457-008-9104-y.

Steudle, E. (2000). Water uptake by plant roots: an integration of views. Plant and Soil. 226(1): 45-56.

Stokes, A., Norris, J. E., Van Beek, L. P. H., Bogaard, T., Cammeraat, E., Mickovski, S. B. & Fourcaud, T. (2008). How vegetation reinforces soil on slopes. In: Slope stability and erosion control: ecotechnological solutions. 65-118, Netherlands: Springer.

Tscharntke, T., Clough, Y., Bhagwat, S.A., Buchori, D., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Veldkamp, E. & Wanger, T.C. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes-areview. Journal of Applied Ecology. 48(3): 619-629. doi: https://doi.org/10.1111/j.1365-2664.2010.01939.x.

Tumwebaze, S. B. & Byakagaba, P. (2016). Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agriculture. Ecosystems & Environment. 216: 188-193. doi: https://doi.org/10.1016/j.agee.2015.09.037.

Upson, M. A. & Burgess, P. J. (2013). Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant and soil. 373(1-2): 43-58. doi: https://doi.org/10.1007/s11104-013-1733-x

Yanai, R. D., Park, B. B. & Hamburg, S. P. (2006). The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Canadian journal of forest research. 36(2): 450-459.

Zadworny, M., Mccormack, ML., Zytkowiak, R., Karolewski, P., Mucha, J. & Oleksyn, J. (2017). Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Global Change Biol. 23: 1218-1231. doi: https://doi.org/10.1111/gcb.13514.

Zhou, Z. & Shangguan, Z. (2007). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. Forest of the Loess Plateau of China. Plant and Soil. 291(1-2): 119-129.

Published

2018-06-26

How to Cite

Rico A., A., & Suárez S., J. C. (2018). Biomass of fine roots in agroforestry arrangements with cocoa in the western Colombian Amazon. Revista De Ciencias Agrícolas, 35(1), 26–35. https://doi.org/10.22267/rcia.183501.80