Aplicação do modelo de ajuste parcial nerloviano para estimar a elasticidade da oferta do plátano na Colômbia

Autores

DOI:

https://doi.org/10.22267/rtend.212202.168

Palavras-chave:

cointegração, estacionariedade, expectativa dos preços, resposta oferta, vetor auto-regresivo

Resumo

O objetivo deste estudo foi estimar a resposta da oferta do plátano e as elasticidades de curto e longo prazo por meio do modelo de ajuste parcial desenvolvido por Nerlove, para o período entre 2000 e 2018. Um desenho de pesquisa explicativo, quantitativo e de correlação, foi aplicada e para a estimativa empírica, utilizou-se uma metodologia vetorial auto-regresiva. Os resultados indicaram que os coeficientes associados ao preço e à produção defasados ​​foram positivos, significativos e consistentes com a teoria econômica. As elasticidades de curto prazo calculadas foram inelásticas e semelhantes a estudos relacionados com culturas permanentes, pelo que se pode inferir que as políticas de preços não são um instrumento eficaz para aumentar a oferta do plátano devido à baixa resposta da produção aos movimentos nos preços.

Downloads

Não há dados estatísticos.

Biografia do Autor

Susan Cancino, Universidade de Pamplona

Mestre em Administração de Empresas pela University of Nottingham, Reino Unido. Membro do Grupo de Pesquisa em Biotecnologia Vegetal da Universidade de Pamplona. ORCiD: 0000-0001-7827-8502. E-mail: susancancino@hotmail.com, Colômbia.

Giovanni Orlando Cancino Escalante, Universidade de Pamplona

PhD em Biotecnologia, University of Nottingham, Reino Unido. Professor da Universidade de Pamplona. Diretor do Grupo de Pesquisa em Biotecnologia Vegetal da Universidade de Pamplona. ORCiD: 0000-0002-3812-1129. E-mail: gcancino@unipamplona.edu.co, Colômbia.

Referências

(1) Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705

(2) Álvarez, L., León, A., Sánchez, M., & Cusme, B. (2020). Evaluación socioeconómica de la producción de plátano en la zona norte de la Provincia de los Ríos. Journal of Business and Entrepreneurial, 4(2), 86-97. https://doi.org/10.37956/jbes.v4i2.78

(3) Askari, H., & Cummings, J. (1977). Estimating agricultural supply response with the Nerlove model: A survey. Economic Review, 18(2), 257-292. https://doi.org/10.2307/2525749

(4) Briceño, F., Rojas, A., & Coydán, I. (2005). Politicas de precios en Chile: El caso de los cereales. Panorama Socioeconómico, 23(31), 58-70.

(5) Chique, V., Rosales R. & Samacá H. (2006). Efectos de la liberalización comercial: un análisis de equilibrio parcial para el sector de arroz en Colombia. Documento CEDE 2006-37.

(6) Dlamini, D. (2018). Supply response of potato to price and non-price factors in Swaziland. Archives of Business Research, 6(10), 78-85. https://doi.org/10.14738/abr.610.5248

(7) Espinal, C., Martínez, J., & Peña, M. (2005). La cadena de plátano en Colombia: Una mirada global de su estrucutra y dinámica 1991-2005. Bogotá: Observatorio Agrocadenas, Documento de trabajo No 61.

(8) Espinosa, A., & Vaca, P. (2011). Impactos y consecuencias en el sector azucarero en Colombia a partir del TLC con la Unión Europea. Horizontes Empresariales, 11(2), 7-34.

(9) Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2020). Datos estadísticos. http://www.fao.org/faostat/es/#data/QC

(10) Dickey W. & Fuller, D. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.2307/2286348

(11) Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/1912791

(12) Guzmán, M., & García, A. (2008). El modelo VAR y sus principales problemas. Panorama Económico, 3(6), 95-117.

(13) Hamilton, J. (1994). Time Series Analysis. Princeton University Press.

(14) Huq, A., & Arshad, M. (2010). Supply response of potato in Bangladesh: A vector error correction approach. Journal of Applied Sciences, 10(11), 859-902. https://doi.org/10.3923/jas.2010.895.902

(15) Johansen, S. (1988). Satistical analysis of cointegrating vectors. Journal of Economic Dynamics, 12(2), 231-254. https://doi.org/10.1016/0165-1889(88)90041-3

(16) Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bulletin of Economic and Statistics, 52(2), 169-210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x

(17) Khan, S., Faisal, M., Ul Haq, Z., Fahad, S., Ali, G., Khan, A., & Khan, I. (2019). Supply response of rice using time series data: Lessons from Khyber Pakhtunkhwa Province, Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(4), 458-461. https://doi.org/10.1016/j.jssas.2018.03.001

(18) Kohli, D. (1996). Supply response in agriculture: A review of methodologies. Working Papers No. 63. National Council of Applied Economic Research.

(19) Lutkepohl, H. (2005). New Introduction to Multiple Times Series Analysis. Springer.

(20) Mekbib, G., Kalkuhl, M., & von Braun, J. (2014). Agricultural supply response to international food prices and price volatility: a cross- country panel analysis. Center for Development Research.

(21) Mesike, C., Okoh, R., & Inoni, O. (2010). Supply response of rubber farmers in Nigeria: An application of vector error correction model. Agricultural Journal, 5(3), 146-150. http://dx.doi.org/10.3923/aj.2010.146.150

(22) Ministerio de Agricultura y Desarrollo Rural (2020). Cadena de plátano. https://sioc.minagricultura.gov.co/Platano/Documentos/2020-03-31%20Cifras%20Sectoriales.pdf

(23) Mose, L., Burger, K., & Kuvyenhoven, A. (2007). Aggregate supply response to price incentives: the case of smallholder maize production in Kenya. African Crop Science, 8, 1271-1275.

(24) Nerlove, M. (1958). Distributed lags and estimation of long-run supply and demand elasticities: Theoretical considerations. Agricultural and Applied Economics Association, 40(2), 301-311. https://doi.org/10.2307/1234920

(25) Nerlove, M. & Bessler, D. (2001). Expectation. Information and dynamics. Handbook of Agricultural Economics, 1(A), 155-206. https://doi.org/10.1016/S1574-0072(01)10006-X

(26) Quintero, J., & López, H. (2011). Respuesta de la oferta de arroz en Colombia 1994-2008. Revista Mundo Económico y Empresarial, (10), 60-72.

(27) Ramírez, M., González, F., Martínez, H., & Ortíz, L. (2004). Respuestas de la oferta y demanda agrícola en el marco de un TLC con Estados Unidos. Observatorio Agrocadenas, Documento de trabajo No. 49.

(28) Sánchez-Zuñiga, J., Sánchez-Molina, J., & Flórez-Vargas, A. (2020). Empleo del residuo agroindustrial del plátano como sustituto parcial del feldespato en la formulación de pasta de cerámica. Revista UIS de Ingeniería, 19(4), 157-166. https://doi.org/10.18273/revuin.v19n4-2020014

(29) Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136

(30) Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1- 48. https://doi.org/10.2307/1912017

(31) Tripathi, A., & Prasad, A. (2009). Estimation of agricultural supply response by cointegration approach. The Indian Economic Journal, 57(1), 106-131. https://doi.org/10.1177/0019466220090106

(32) Van Wyk, D., & Treurnicht, N. (2012). A quantitative analysis of supply response in the Namibian mutton industry. South African Journal of Industrial Engineering, 23(1), 202-215.

Publicado

2021-07-01

Como Citar

Cancino, S., & Cancino Escalante, G. O. (2021). Aplicação do modelo de ajuste parcial nerloviano para estimar a elasticidade da oferta do plátano na Colômbia. Tendencias, 22(2), 57–75. https://doi.org/10.22267/rtend.212202.168