Metodología rápida y sencilla para la determinación de colifagos somáticos como indicadores de contaminación fecal en una planta de tratamiento de agua localizada al noreste colombiano

Autores/as

  • Raquel Amanda Villamizar-G. Universidad de Pamplona
  • Oscar O. Ortíz R. Universidad de Pamplona
  • Enrique Aquiles Darghan Universidad Nacional de Colombia

Palabras clave:

Agua, Potabilización, Bacterias, Coliformes, Colifagos

Resumen

 Resumen

Introducción: En el presente artículo se propone una metodología rápida y sencilla para determinar colifagos sómaticos en las diferentes etapas del tratamiento de agua de una planta del Nordeste Colombiano, con el fin de verificar la calidad del proceso de potabilización. Materiales y métodos: Se empleó la técnica de filtración por membrana para obtener el contenido fágico y posteriormente se cuantificó la presencia de los virus a través de la metodología de capa simple usando agar tripticasa de soya modificado. Resultados: El 88% de las muestras de agua analizadas resultaron ser positivas en alguna de las etapas del proceso de potabilización. La presencia de fagos aumentó en época de lluvias con recuentos máximos de 1310 UFP/100mL en la etapa de captación del agua y de 2,5 UFP/100mL en la etapa de cloración. La prueba no-paramétrica Chi cuadrado de homogeneidad en distribución corroboró estadísticamente la igualdad en distribución de las muestras positivas encontradas en cada una de las etapas de potabilización (p>5%) pues el muestreo fue fijado por indicador. Conclusión: La metodología empleada permitió en tan solo 12 horas determinar la presencia de colifagos somáticos en las diferentes etapas de tratamiento de agua de la planta objeto de estudio. Además, se comprobó la elevada resistencia de estas nanomáquinas naturales a los procesos de desinfección, que mostraron persistencia en etapas de almacenamiento y distribución, especialmente en época de lluvias.

Abstract

Introduction: In this article a quick and simple method is proposed to determine somatic coliphages in the different stages of water treatment in a plant in the northeast of Colombia, in order to verify the quality of the treatment process. Materials and methods: The technique of membrane filtration was used to get the phage content and subsequently through the methodology of single layer using tryptic soy agar modified, the presence of the virus was quantified. Results: 88% of the water samples analyzed were found to be positive in any of the stages of purification. The presence of phages increased during the rainy season with maximum counts of 1310 UFP / 100 mL at the stage of uptake of water and 2.5 UFP / 100 mL in the chlorination stage. Non-parampetrica Chi square homogeneous distribution test confirmed statistically equal distribution of positive samples found in each of the stages of purification (p> 5%) because the sample was determined by indicator. Conclusion: The methodology allowed to determine the presence of somatic coliphages at different stages of water treatment in the plant under study in only 12 hours. In addition, the high resistance of these natural nanomachines to the processes of disinfection was found, which showed persistence in warehousing and distribution stages, especially in the rainy season.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Raquel Amanda Villamizar-G., Universidad de Pamplona

PhD. Nanociencia y nanotecnología. Profesora Auxiliar del Departamento de Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona. Pamplona, Colombia.

Oscar O. Ortíz R., Universidad de Pamplona

PhD. en Ingeniería de procesos y ambiental. Profesor Asociado del Departamento de Ingeniería Industrial, Facultad de Ingenierías & Arquitectura - Universidad de Pamplona. Pamplona, Colombia.

Enrique Aquiles Darghan, Universidad Nacional de Colombia

PhD. en Estadística. Profesor Auxiliar del Departamento de Agronomía, Facultad de Agronomía. Universidad Nacional de Colombia. Santa Fé de Bogotá, Colombia.

Citas

Tien JH, Earn DJD. Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bulletin of Mathematical Biology. 2010; 72: 1506– 1533

Nunes MM, Arrais de Alencar AL, Caldas ED. Investigation of food and water microbiological conditions and foodborne disease outbreaks in the Federal District, Brazil. Food Control. 2013; 34: 235–240

Rezaeinejad S, Vergara G, Woo CH, Lim TT, Sobsey MD, Gin KYH. Surveillance of enteric viruses and coliphages in a tropical urban catchment. Water Research. 2014; 58: 122 – 131

Castelló LD, Gil-González D, Alvarez-Dardet C, Hernández-Aguado I. The environmental millennium development goal: progress and barriers to its achievement. Environmental science & policy. 2013; 13: 154 – 163

Hsu A, Lloyd A, Emerson JW. What progress have we made since Rio? Results from the 2012 Environmental Performance Index (EPI) and Pilot Trend EPI. Environmental Science & Policy. 2013; 33: 171 – 185

Withey S, Cartmell E, Avery LM, Stephenson T. Bacteriophages—potential for application in wastewater treatment processes. Science of the Total Environment. 2005; 339:1–18.

Ackermann W. Bacteriophage observations and evolution. Journal of Microbiology. 2003; 154: 245- 251.

Vinje J, Oudejans SJ, Stewart JR, Sobsey MD, Long SC. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse line blot hybridization. Applied Environmental Microbiology. 2004; 70: 5996–6004.

Wolf S, Hewitt J, Rivera M, Greening G. Detection and characterization of F+ RNA bacteriophages in water and shellfish: Aplication of a multiplex real-time reverse transcription PCR. Journal of Virological Methods. 2008; 149: 123-128

Langlet J, Ogorzaly L, Schrotter JC, Machinal C, Gaboriaud F, Duval JFL, Gantzer C. Efficiency of MS2 phage and Qb phage removal by membrane filtration in water treatment: applicability of real-time RT-PCR method. Journal of Membrane Science. 2009; 326: 111-116.

Jones TH, Nattress FM, Dilts B, Olsen D, Muehlhauser V. Numbers of coliforms, E. coli, F-RNA phage, bovine enteric calicivirus and presence of non-0157 STEC on commercial vaccum packaged beef. Food Microbiology. 2014; 42: 225-231

Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases. 2004; 4: 337 – 348.

Boudaud N, Machinal C, David F, Bourdonnec A, Jossent J, Bakanga F, Arnal F, Jaffrezic MP, Oberti S, Gantzer C. Removal of MS2, Qb and GA bacteriophages during drinking water treatment at pilot scale. Water Research. 2012; 46: 2651 -2664.

Beaudoin RN, DeCesaro DR, Durkee DL, Barbaro S.E. Isolation of a bacteriophage from sewage sludge and characterization of its bacterial host cell. Rivier Acad J. 2007; 3: 1

Campos C, Guerrero A, Cárdenas M. Removal of bacterial and viral fecal indicator organisms in a waste stabilization pond system in Chocontá, Cundinamarca (Colombia). Water Science and Technology. 2002; 45: 61-66.

Aricapa G, Pérez JE, Benavides D, López A. Prevalencia de colifagos en el agua del acueducto de la Vereda La cabaña del Municipio de Manizales. Biosalud. 2005; 14: 28 – 37.

Gaviria GA, González M, Castaño JO. Técnica para aislamiento de bacteriófagos específicos para E. coli DH5α a partir de aguas residuales. Revista MVZ Córdoba. 2012; 2852-2860.

Hudson JA, Billington C, Cornelius AJ, Wilson T, Premaratne NJ. Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiology 2013; 36:14-21

Jofre J, Blanch AR, Lucena F, Muniesa M. Bacteriophages infecting bacteroides as a marker for microbial source tracking. Water Research. 2013; 55:1-11.

Colombia. MPS/MAVDT. Ministerio de la Protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia. Resolución 2115 de 2007. Bogotá DC: Ministerio; 2007.

Wiedenmann A, Langhammer W, Botzenhart K. A case report of false negative Legionella test results in a chlorinated public hot water distribution system due to the lack of sodium thiosulfate in sampling bottles. International Journal of Hygiene and Environment and Health. 2001; 204: 245-249.

APHA. American Public Health Association. Standard methods for the examination of water and wastewater. 20 Ed. American Public Health Association, Washington, D.C. 1998.

Byamukama D, Kansiime F, Mach RL, Farnleitner AH. Determination of Escherichia coli contamination with chromocult coliform agar showed a high level of discrimination efficiency for differing fecal pollution levels in tropical waters of Kampala, Uganda. Applied and Environmental Microbiology. 2000;66 (2).

Carrillo EM, Lozano AM. Validación del método de detección de coliformes totales y fecales en agua potable utilizando Agar Chromocult. [Tesis]. Facultad de Ciencias. Microbiología Industrial. Pontificia Universidad Javeriana. Bogotá, 2008

Johnson N, Chang Z, Bravo-Almeida C, Michel M, Iversen C, Callanan M. Evaluation of indirect impedance for measuring microbial growth in complex food matrices. Food Microbiology. 2014; 42: 8-13

Durán AE, Muniesa M, Méndez X, Valero F, Lucena F, Jofre J. Removal and inactivation of indicator bacteriophages in fresh waters. Journal of Applied Microbiology. 2002; 92(2): 338-47.

Leclerc H, Edberg S, Pierzo V, Delattre JM. Bacteriophages as indicators of enteric viruses and public health risk in groundwaters. Journal of Applied Microbiology. 2000; 88: 5–21.

Paruch AM, Mæhlum T. Specific features of Escherichia coli That distinguish it from coliform and thermotolerant coliform Bacteria and define it as the most accurate indicator of faecal Contamination in the environment. Ecological Indicators. 2012; 23: 140–142

Kostyla C, Bain R, Cronk R, Bartram J. Seasonal variation of fecal contamination in drinking water sources in developing countries: A systematic review. Science of The Total Environment. 2015; 514:333-343

Ávila de Navia S, Estupiñán M. Calidad bacteriológica del agua de consumo humano de la zona urbana y rural del municipio de Guatavita. Cundinamarca, Colombia. Revista Cubana de Higiene y Epidemiología. 2011; 50(2): 163-168.

Morillo A, Botero L. Evaluación de la remoción de colifagos y bacterias indicadoras de contaminación en la Planta de tratamiento sur de aguas servidas de la ciudad de Maracaibo. Ciencia. 2005; 13(2): 147 – 161.

Chierchi C, Gu ZA. Effect on bacterial growth stage on resistance to chlorine disinfection. Water&Science. 2011; 64:1

Douterelo I, Husband S. Boxall JB. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system. Water Research. 2014; 54:100-114.

Rasekh A, Brumbelow K. Drinking water distribution systems contamination management to reduce public health impacts and system service interruptions. Environmental Modelling & Software. 2014; 51: 12–25

Gibson KE. Viral pathogens in water: occurrence, public health impact, and available control strategies. Current Opinion in Virology. 2014; 4: 50–57

Alia MA, Herrawyb AZ, El-Hawaary SE. Detection of enteric viruses, Giardia and ryptosporidium in two different types of drinking water treatment facilities. Water Research. 2004; 38:3931–3939

Lee YD, Kim JK, Park JH. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control. 2013; 34: 255-260.

Kreißel K, Bösl M, Hugler M, Lipp P, Franzreb M, Hambsch B. Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride e A mechanistic study. Water Research. 2014; 51: 144-151

Descargas

Publicado

2015-05-26

Cómo citar

1.
Villamizar-G. RA, Ortíz R. OO, Aquiles Darghan E. Metodología rápida y sencilla para la determinación de colifagos somáticos como indicadores de contaminación fecal en una planta de tratamiento de agua localizada al noreste colombiano. Univ. Salud [Internet]. 26 de mayo de 2015 [citado 22 de diciembre de 2024];17(1):57-68. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/2397

Número

Sección

Artículo de investigación científica y tecnológica