contadores web
Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Revisión de Tema

Vol. 17 Núm. 2 (2015)

Miocardiocitos conducentes ventriculares

DOI
https://doi.org/10.22267/rus.151702.10
Enviado
abril 26, 2016
Publicado
2015-04-26

Resumen

Objetivo: Exponer las características histológicas y funcionales que se presentan en el tejido muscular estriado cardíaco especializado en la conducción del estímulo eléctrico y sus implicaciones actuales en las arritmias cardíacas. Materiales y métodos: Se seleccionaron publicaciones en revistas indexadas en las bases PubMed, Wiley, Ovid-Medline y Science Direct. Los descriptores MESH utilizados para la búsqueda fueron cardiac myocytes, myocardium, heart conduction system. Se acoplaron los conceptos histology y arrhythmia. Se revisaron artículos publicados entre 1990 a 2014, originales, reportes de caso y revisiones, relacionados con los conceptos de desarrollo embrionario, diferenciación celular, morfología normal y alteración de los miocardiocitos conducentes ventriculares. Se revisó el resumen de 317 artículos, de los que se clasificaron 75 para lectura completa y de estos, 52 se seleccionaron para la redacción del presente artículo. Conclusión: Los estudios actuales se encaminan hacia las simulaciones del sistema de conducción para establecer otras causas de arritmia y opciones de tratamiento. La terapia con células indiferenciadas y las técnicas moleculares de modificación genética hacen parte de estos estudios, así como la implementación de terapias alternativas no invasivas en el tratamiento de las arritmias cardíacas.

Citas

  1. Boyden PA, Hirose M, Dun W. Cardiac Purkinje cells. Heart Rhythm. 2010;7(1):127-35.
  2. Nabipour A. The anatomy and histology of the atrioventricular conducting system in the hedgehog (Hemiechinus auritus) heart. Turk J Zool. 2010;34(2):237-42.
  3. Stankovicova T, Bito V, Heinzel F, Mubagwa K, Sipido KR. Isolation and morphology of single Purkinje cells from the porcine heart. Gen Physiol Biophys. 2003;22(3):329-40.
  4. Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the cardiac conduction system. Clin Anat. 2009;22(1):99-113.
  5. Hatcher CJ, Basson CT. Specification of the cardiac conduction system by transcription factors. Circ Res. 2009;105(7):620-30.
  6. Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, et al. Lethal arrhythmias in Tbx3- deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A. 2012;109(3):E154-63.
  7. Bhattacharya S, Macdonald ST, Farthing CR. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci (Lond). 2006;111(1):35-46.
  8. J Boullin JMM. The development of cardiac rhythm. Heart. 2005;91:874–5.
  9. Salazar-García M, Sanchez-Gómez C, Contreras- Ramos A, et al. Los segmentos cardíacos primitivos, su implicación en la cardiogénesis normal aplicada a la cardiología pediátrica. Arch Cardiol Méx. 2006;76
  10. Sedmera D, McQuinn, T. Embryogenesis of heart muscle. Heart Fail Clin. 2008;4(3):235–45.
  11. Zaffran S, Frasch M. Early signals in cardiac development. Circ Res. 2002;91(6):457-69.
  12. Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development. 2008;135(5):789-98.
  13. Hua LL, Vedantham V, Barnes RM, Hu J, Robinson AS, Bressan M, et al. Specification of the mouse cardiac conduction system in the absence of endothelin signaling. Dev Biol. 2014;393(2):245-54.
  14. Rosenquist T, Finnell R. Another key role for the cardiac neural crest in heart development. Am J Physiol Heart Circ Physiol. 2007;292:H1225-H6.
  15. Poelmann R, Lie-Venema, H, Gittenbergerde A, Groot P. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J. 2002;29(4).
  16. Lie-Venema H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. ScientificWorldJournal. 2007;7:1777-98.
  17. Muñoz-Chápulia R, Macíasa D, González-Iriartea M, et al. El epicardio y las células derivadas del epicardio: múltiples funciones en el desarrollo cardíaco. Rev Esp Cardiol 2002;55(10):1070-82.
  18. Eralp I, Lie-Venema H, Bax NA, Wijffels MC, Van Der Laarse A, Deruiter MC, et al. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(12):1272-80.
  19. Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol. 2009;6(4):317- 21.
  20. Franco D, Icardo JM. Molecular characterization of the ventricular conduction system in the developing
  21. mouse heart: topographical correlation in normal and congenitally malformed hearts. Cardiovasc Res. 2001;49(2):417-29.
  22. Airey JA, Almeida-Porada G, Colletti EJ, Porada CD, Chamberlain J, Movsesian M, et al. Human mesenchymal stem cells form Purkinje fibers in fetal sheep heart. Circulation. 2004;109(11):1401-7.
  23. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21(9):1098-112.
  24. Sizarov A, Devalla HD, Anderson RH, Passier R, Christoffels VM, Moorman AF. Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol. 2011;4(4):532-42.
  25. Ryu S YS, Andersen CR, Nakazawa K, Miyake F, James TN. Intramural Purkinje cell network of sheep ventricles as the terminal pathway of conduction system. Anat Rec (Hoboken). 2009;292(1):12-22.
  26. Vaidyanathan R, O’Connell RP, Deo M, Milstein ML, Furspan P, Herron TJ, et al. The ionic bases of the action potential in isolated mouse cardiac Purkinje cell. Heart Rhythm. 2013;10(1):80-7.
  27. Maguy A, Le Bouter S, Comtois P, Chartier D, Villeneuve L, Wakili R, et al. Ion channel subunit expression changes in cardiac Purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure. Circ Res. 2009;104(9):1113-22.
  28. Atkinson A, Inada S, Li J, Tellez JO, Yanni J, Sleiman R, et al. Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. J Mol Cell Cardiol. 2011;51(5):689-701.
  29. Di Maio A, Ter Keurs HE, Franzini-Armstrong C. T-tubule profiles in Purkinje fibres of mammalian myocardium. J Muscle Res Cell Motil. 2007;28(2-3):115-21.
  30. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919-82.
  31. Deo M, Boyle PM, Kim AM, Vigmond EJ. Arrhythmogenesis by single ectopic beats originating in the Purkinje system. Am J Physiol Heart Circ Physiol. 2010;299(4):H1002-11.
  32. Corrias A, Giles W, Rodriguez B. Ionic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. Am J Physiol Heart Circ Physiol. 2011;300(5):H1806-13.
  33. Romero L, Pueyo E, Fink M, Rodriguez B. Impact of ionic current variability on human ventricular cellular electrophysiology. Am J Physiol Heart Circ Physiol. 2009;297(4):H1436-45.
  34. Hirose M, Stuyvers BD, Dun W, ter Keurs HE, Boyden PA. Function of Ca(2+) release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy. Circ Arrhythm Electrophysiol. 2008;1(5):387-95.
  35. Bocchi L, Vassalle M. Characterization of the slowly inactivating sodium current INa2 in canine cardiac single Purkinje cells. Exp Physiol. 2008;93(3):347-61.
  36. Xiao L, Koopmann TT, Ördög B, Postema PG, Verkerk AO, Iyer V, et al. Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res. 2013;112(10):1310-22.
  37. Bogun F, Good E, Reich S, Elmouchi D, Igic P, Tschopp D, et al. Role of Purkinje fibers in post-infarction ventricular tachycardia. J Am Coll Cardiol. 2006;48(12):2500-7.
  38. Ben Caref E, Boutjdir M, Himel HD, El-Sherif N. Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. Europace. 2008;10(10):1218-23.
  39. Huang J, Dosdall DJ, Cheng KA, Li L, Rogers JM, Ideker RE. The importance of Purkinje activation in long duration ventricular fibrillation. J Am Heart Assoc. 2014;3(1):e000495.
  40. Wang B, Wang G, To F, Butler JR, Claude A, McLaughlin RM, et al. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir. 2013;29(35):11109-17.
  41. Iyer V, Sampson KJ, Kass RS. Modeling Tissue-and Mutation-Specific Electrophysiological Effects in the Long QT Syndrome: Role of the Purkinje Fiber. PloS one. 2014;9(6):e97720.
  42. Hamamoto T, Tanaka H, Mani H, Tanabe T, Fujiwara K, Nakagami T, et al. In situ Ca2+ dynamics of Purkinje fibers and its interconnection with subjacent ventricular myocytes. J Mol Cell Cardiol. 2005;38(4):561-9.
  43. Lin C, Jin Q, Zhang N, Zhou J, Pang Y, Xin Y, et al. Endocardial focal activation originating from Purkinje fibers plays a role in the maintenance of long duration ventricular fibrillation. Croat Med J. 2014;55(2):121-7.
  44. Van Herendael H, Zado ES, Haqqani H, Tschabrunn CM, Callans DJ, Frankel DS, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm. 2014;11(4):566-73.
  45. Yagishita A, Yamauchi Y, Obayashi T, Hirao K. Idiopathic ventricular fibrillation associated with early repolarization which was unmasked by a sodium channel blocker after catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2014;41(2):145-6.
  46. Li D, Yang M, Zhao L, Zheng H, Li Y, Chang X, et al. Acupuncture for chronic, stable angina pectoris and an investigation of the characteristics of acupoint specificity: study protocol for a multicenter randomized controlled trial. Trials. 2014;15:50.
  47. Brenyo A, Aktas MK. Review of complementary and alternative medical treatment of arrhythmias. Am J Cardiol. 2014;113(5):897-903.
  48. Arslan M, Yeşilçam N, Aydin D, Yüksel R, Dane S. Wet cupping therapy restores sympathovagal imbalances in cardiac rhythm. J Altern Complement Med. 2014;20(4):318-21.
  49. Toise SC, Sears SF, Schoenfeld MH, Blitzer ML, Marieb MA, Drury JH, et al. Psychosocial and cardiac outcomes of yoga for ICD patients: a randomized clinical control trial. Pacing Clin Electrophysiol. 2014;37(1):48-62.
  50. Mehta PK, Polk DM, Zhang X, Li N, Painovich J, Kothawade K, et al. A randomized controlled trial of acupuncture in stable ischemic heart disease patients. Int J Cardiol. 2014;176(2):367-74.
  51. Chu P, Gotink RA, Yeh GY, Goldie SJ, Hunink MM. The effectiveness of yoga in modifying risk factors for cardiovascular disease and metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2014.
  52. Cramer H, Lauche R, Haller H, Dobos G, Michalsen A. A systematic review of yoga for heart disease. Eur J Prev Cardiol. 2014.
  53. Cramer H, Lauche R, Haller H, Steckhan N, Michalsen A, Dobos G. Effects of yoga on cardiovascular disease risk factors: a systematic review and meta-analysis. Int J Cardiol. 2014;173(2):170-83.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...