Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública

Autores/as

  • Gloria Lucia Cardenas Calvachi Universidad Mariana
  • Ivan Andrés Sanchez Ortiz Universidad de Nariño

Palabras clave:

Aguas residuales, Contaminación, Remoción, Salud pública, Tratamiento biológico

Resumen

Introducción: El tratamiento de aguas residuales (AR), centrado tradicionalmente en la remoción de sólidos, patógenos y materia orgánica, ha puesto especial interés en la remoción de nutrientes, principalmente del nitrógeno debido a las consecuencias ambientales y sanitarias de su presencia en el recurso hídrico como aumento de la acidez, eutrofización y toxicidad de los ecosistemas acuáticos, que afectan sobrevivencia, crecimiento y capacidad reproductiva de algunos animales. Ciertas formas de nitrógeno en el agua establecen riesgos para la salud humana por su ingesta o por contacto directo con compuestos como toxinas, liberadas por floraciones de cianobacterias en ambientes eutrofizados. Metodología: La presente revisión, trata sobre los tipos de compuestos nitrogenados en el agua; sus orígenes e impactos sobre el recurso hídrico, algunas especies hidrobiológicas y la salud humana; describe brevemente las opciones tradicionales para transformación o remoción de compuestos nitrogenados en AR, enfatizando en las relativas a la eliminación biológica, pues pueden remover completamente el contaminante y no lo traslada hacia otros sistemas. Resultados: La información presentada es de gran importancia para la selección de sistemas de tratamiento y remoción del nitrógeno de AR para reducir sus impactos sobre los cuerpos de agua y preservar la salud pública. 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Gloria Lucia Cardenas Calvachi, Universidad Mariana

Ingeniera quimica, Docente en el área de la quimica ambiental en el programa de Ingenierìa ambiental de la Universidad Mariana y en el área de calidad de aguas en el programa de Ingenierìa de Producción acuicola en la Universidad de Nariño

Ivan Andrés Sanchez Ortiz, Universidad de Nariño

Ingeniero Civil, Esp. y M.Sc en Ingeniería Civil.  Profesor Asistente del Departamento de Recursos Hidrobiológicos, Facultad de Ciencias Pecuarias de la Universidad de Nariño

Citas

Atlas R, Bartha R. Ecología microbiana y Microbiología ambiental. Madrid: Pearson Educación S.A.; 2002.

Hagopian DS, Riley, JG. A closer look at the bacteriology of nitrification. Aquacultural Engineering. 1998; 18:223-44.

Boyd CE, Massaut L. Risks associated with the use of chemicals in pond aquaculture. Aquacultural Engineering. 1999; 20: 113-32.

Timmons M, Ebeling J, Wheaton F, Summerfelt S, Vinci B. Sistemas de recirculación para la acuacultura. Santiago de Chile: Fundación Chile; 2002.

Roldán Perez GA, Ramirez Restrepo JJ. Fundamentos de Limnología Neotropical. 2ª Ed. Medellín: Universidad de Antioquia; 2008.

Diaz RJ, Nestlerode J, Diaz M. A Global perspective on the effects of eutrophication and hypoxia on aquatic biota. In: Rupp G, White M (Eds.), Seventh International Symposium: Fish Physiology, Toxicology, and Water Quality - Tallinn, Estonia. 2003: 1-34.

Brown T, LeMay H, Bursten B, Burdge J. Química, la ciencia central. Ciudad de México: Pearson Educación; 2004.

Sawyer C, McCarty P, Parkin G. Química para Ingeniería Ambiental. 4ª Ed. Ariza E, Ed, Arteaga L, Traductor. Santafé de Bogotá, Colombia: McGraw Hill; 2001.

Beristain-Cardoso R, Texier AC, Razo-Flores E, Mendez-Pampín R, Gomez J. Biotransformation of aromatic compounds from wastewaters containing N and/or S, by nitrification/denitrification : a review. Environmental Science Biotechnology. 2009; 8: 325-42.

Camargo J, Alonso A. Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Revista Ecosistemas [internet]. 2007: 16(2). Disponible en: www.revistaecosistemas.net.

Ecological Society of America. Excess Nitrogen in the U.S. Environment: Trends, Risks, and Solutions. Issues in ecology, Report number fifteen. Washington DC: The Society; 2012

Camargo J, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment international. 2006; 32(6): 831-49.

United States Environmental Protection Agency USEPA. Frequently asked questions about atmospheric deposition, a handbook for watershed managers. Washington DC: The Agency; 2001.

Fields S. Global nitrogen: Cycling out of control. Environmental Health Perspectives. 2004; 112(10): A556-63

Lema JM. Eliminación biolóxica de nitróxeno en aguas residuais. Revista Galega do Ensino. 1998; 19: 49-73.

Cervantes FJ, editor. Environmental Technologies to Treat Nitrogen Pollution. Principles and Engineering. London, UK: IWA Publishing; 2009.

Cervantes F, Pérez J, Gómez J. Avances en la Eliminación Biológica del Nitrógeno de las Aguas Residuales. Revista Latinoamericana de Microbiología. 2000; 42: 73-82.

Van Rijn J. The potential for integrated biological treatment systems in recirculating fish culture-A review. Aquaculture. 1996; 139: 181-201.

Singer A, Parnes S, Gross A, Sagi A, Brenner A. A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquacultural Engineering. 2008; 1-6.

Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review. Eng. Life Sci. 2007; 7(1): 13-25.

Masser MP, Rakocy J, Losordo TM. Recirculating Aquaculture Tank Production Systems- Management of Recirculating Systems. Southern Regional Aquaculture Center. 1992; 452: 1-12.

Twarowska JG, Westerman PW, Losordo, TM. Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquacultural Engineering. 1997; 16: 133-47.

Colt J. Water quality requirements for reuse systems. Aquacultural Engineering. 2006; 34: 143-56.

Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 1999; 176(February): 227-35.

Nóbrega CCL, Pacheco FA. Modelagem matemática para avaliação dos efeitos de despejos orgânicos nas condições sanitárias de águas ambientais. Cad. Saúde Pública, Rio de Janeiro. 2006; 22(8):1715-25

Choudhury ATMA, Kennedy IR. Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems. Communications in Soil Science and Plant Analysis. 2005; 36: 1625–39.

European Commission Directorate-General XI. Position paper on air quality: Nitrogen dioxide. The commission. 1997. 76p.

Alaburda J, Nishihara L. Presença de compostos de nitrogênio em águas de poços. Rev. Saúde Pública. 1998; 32(2): 160-5.

United Nations Environmental Programme UNEP, The Woods Hole Research Center WHRC. Reactive Nitrogen in the environment, too much or too little of a good thing. Paris: UNEP & WHRC. 2007. 51p.

Arbiv R, Van Rijn J. Performance of a Treatment System for Inorganic Nitrogen Removal in Intensive Aquaculture Systems. Aquacultural Engineering. 1995; 14: 189-203.

United States Environmental Protection Agency USEPA. Nitrogen: Multiple and regional impacts. USEPA clean air market programs. Washington, DC: The Agency. 2002. 38 p.

Van Rijn J, Fonarev N, Berkowitz B. Anaerobic treatment of intensive fish culture effluents: digestion of fish feed and release of volatile fatty acids. Aquaculture. 1995; 133: 9-20.

Avnimelech Y. Bio-filters : The need for a new comprehensive approach. Aquacultural Engineering. 2006; 34: 172-78.

Boyd CE. Water quality in ponds for aquaculture. Auburn, USA: Alabama Agricultural Experiment Station. 1990.

Alonso, A. Valoración del efecto de la degradación ambiental sobre los macroinvertebrados bentónicos en la cabecera del río Henares. Ecosistemas. 2006: 15(2): 101-5.

Camargo J, Alonso A, Salamanca A. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere. 2005; 58(9): 1255-67.

Thorarensen H, Farrell AP. The biological requirements for post-smolt Atlantic salmon in closed-containment systems. Aquaculture. 2011; 312: 1-14.

Lewis W, Morris D. Toxicity of Nitrite to Fish: A review. Transactions of the American Fisheries Society. 1986; 115: 183-95.

Timmons M, Ebeling J. Recirculating Aquaculture. New York: Northeastern Regional Aquaculture Center. 2010.

Shimura R, Ijiri K, Mizuno R, Nagaoka S, Co ES. Aquatic Animal Research in Space Station and its issues -Focus on support Technology on Nitrate Toxicity-. Advances in Space Research. 2002; 30(4): 803-8.

Boley A, Mülleru W, Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacultural Engineering. 2000; 22: 75-85.

Fewtrell L. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion. Environmental Health Perspectives. 2004; 112(14): 1371-4.

Vieira AM, Dos Santos SA, Do Valle CNT, Da Silva JA. Educação Alimentar: Uma Proposta de Redução do Consumo de Aditivos Alimentares. Química nova na escola. 2012; 34(2): 51-7

Manahan S. Environmental Chemistry. 9a. Ed. London, Great Britain: CRC Press. 2010.

Mensinga TT, Speijers GJA, Meulenbelt J. Health Implications of Exposure to Environmental Nitrogenous Compounds. Toxicol Rev. 2003; 22(1): 41-51

Teixeira PML, Peres F. Consumo de aditivos alimentares e efeitos à saúde: desafios para a saúde pública brasileira. Cad. Saúde Pública, Rio de Janeiro. 2009; 25(8): 1653-66.

United States Environmental Protection Agency USEPA. (7 de March de 2012). National Recommended Water Quality Criteria. Recuperado el 9 de Abril de 2012, de http://water.epa.gov/scitech/swguidance/standards/current/index.cfm

Brasil. Ministério da Saúde. Portaria no. 518, de 25 de março de 2004: estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da agua para consumo humano e seu padrão de potabilidade. Brasília: Diário Oficial da União. 2004; 59: 266-70.

Ministerios de Protección Social y de Ambiente, Vivienda y Desarrollo Territorial de Colombia. Resolución Número 2115 del 22 de junio del 2007. Recuperado el 19 de Abril de 2012, de www.minproteccionsocial.gov.co/Normatividad/RESOLUCIÓN%202115%20DE%202007.pdf

Busse LB, Venrick EL, Antrobus R, Miller PE, Vigilant V, Silver MW, Mengelt C, et al. Domoic acid in phytoplankton and fish in San Diego, CA, USA. Harmful Algae. 2006; 5(1): 91-101.

Stewart I, Webb PM, Schluter PJ, Shaw GR. Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environmental Health: A Global Access Science Source. 2006; 5:6

Johnson P, Carpenter S. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes and predictions. En R. Ostfeld, F. Keesing, & V. Eviner, Infectious Disease Ecology: the effects of ecosystems on disease and of disease on ecosystems. New Jersey, USA: Princeton University Press. 2008. 71-99p.

Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, et al. Human health effects of a changing global nitrogen cycle. Front Ecol Environ. 2003; 1(5): 240–6.

Smith VH, Joye SB, Howarth RW. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography. 2006; 51: 351-5.

Carrera Muyo J. Eliminación biológica de nitrógeno en un efluente con alta carga. Estudio de los parámetros del proceso y diseño de una depuradora industrial. Barcelona: Universidad Autónoma de Barcelona. 2001.

Kiely G. Ingeniería Ambiental: Fundamentos, entornos, tecnologías y sistemas de gestión. Veza JM, Trad. Madrid: McGraw Hill. 1999.

Carrera Muyo J. Eliminación biológica de nitrógeno en un efluente con alta carga. Estudio de los parámetros del proceso y diseño de una depuradora industrial. Barcelona: Universidad Autónoma de Barcelona. 2001.

Lema JM. Eliminación biolóxica de nitróxeno en aguas residuais. Revista Galega do Ensino. 1998; 19: 49-73.

Metcalf & Eddy, Inc. Ingeniería de aguas residuales: tratamiento, vertido y reutilización. 3ª. Ed. Madrid, España: Mc Graw-Hill. 1995

Avnimelech Y, Mozes N, Diab S, Kochba M. Rates of organic carbon and nitrogen degradation in intensive fish ponds. Aquaculture. 1995; 134: 211-6.

Perez S, Niño Z, Hernández V, Hernández C. Uso de Enzimas de Tipo Ureasa en el Tratamiento de Aguas Residuales con Alto Contenido en Nitrógeno Orgánico. Información tecnológica. 2007; 18(5): 41-8.

Cárdenas C, Perruolo T, Ojeda M, Chirinos M, Yabroudi S, et al. Evaluación del proceso de nitrificación y desnitrificación en el tratamiento de aguas residuales utilizando un reactor por carga. Ciencia. 2006;

(March): 75-87.

Van Loosdrecht M, Van Benthum W, Heijnen J. Integration of nitrification and denitrification in biofilm airlift suspension reactors. Water Science and Technology. 1998; 41(4-5): 97-103.

Chen S, Ling J, Blancheton JP. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering. 2006; 34: 179-97.

Schreier HJ, Mirzoyan N, SaitoK. Microbial diversity of biological filters in recirculating aquaculture systems. Current Opinion in Biotechnology. 2010; 21: 318-25.

Perez J, Menéndez C. Variantes de procesos de nitrificación- desnitrificación para un sistema de biomasa en suspensión para el tratamiento de aguas residuales. Ingeniería Hidráulica y Ambiental. 2007; XXVIII(3): 57-64.

Zhu S, Chen S. The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering. 2002; 26: 221-37.

Perez S, Niño Z, Hernández V, Hernández C. Uso de Enzimas de Tipo Ureasa en el Tratamiento de Aguas Residuales con Alto Contenido en Nitrógeno Orgánico. Información tecnológica. 2007; 18(5): 41-8.

Thomsen JK, Geest T, Cox RP. Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans. Applied and Environmental Microbiology. 1994; 60(2): 536-41.

Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, et al. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacultural Engineering. 2008; 38: 79-92.

Akunna JC, Bizeau C, Moletta, R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. Water Research. 1993; 27(8): 1303-12.

Lee SI, Park JH, Ko KB, Koopman B. Effect of fermented swine wastes on biological nutrient removal in Sequencing Batch Reactors. Water Research. 1997; 31(7): 1807-12.

Peng YZ, Ma Y, Wang SY. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process. Journal of environmental sciences (China). 2007; 19(3): 284-9.

Elefsiniotis P, Li D. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal. 2006; 28(2): 148-55.

Ciudad G, Rubilar O, Vergara C, Ruiz G, Chamy R, Jeison D. Desnitrificación de aguas residuales con alto contenido de nitrito como parte de una estrategia de nitrificación - desnitrificación vía nitrito. XV Congreso de Ingeniería Sanitaria y Ambiental AIDIS – Concepción (Chile). 2003.

Mulder A, Van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic

ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology. 1995; 16: 177-84.

Strous M, Van Gerven E, Zheng P, Kuenen G, Jetten M. Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation (ANAMMOX) process in different reactor configurations. Water Research. 1997; 31(8): 1955-62.

Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review. Eng. Life Sci. 2007; 7(1): 13-25.

Lin YF, Jing SR, Lee DY, Wang TW. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture. 2002; 209: 169-84.

Ciudad G, Rubilar O, Vergara C, Ruiz G, Chamy R, Jeison D. Desnitrificación de aguas residuales con alto contenido de nitrito como parte de una estrategia de nitrificación - desnitrificación vía nitrito. XV Congreso de Ingeniería Sanitaria y Ambiental AIDIS – Concepción (Chile). 2003.

Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review. Eng. Life Sci. 2007; 7(1): 13-25.

Cárdenas C, Perruolo T, Ojeda M, Chirinos M, Yabroudi S, et al. Evaluación del proceso de nitrificación y desnitrificación en el tratamiento de aguas residuales utilizando un reactor por carga. Ciencia. 2006; 14(March): 75-87.

Perez J, Menéndez C. Variantes de procesos de nitrificación- desnitrificación para un sistema de biomasa en suspensión para el tratamiento de aguas residuales. Ingeniería Hidráulica y Ambiental. 2007; XXVIII(3): 57-64.

Lema JM. Eliminación biolóxica de nitróxeno en aguas residuais. Revista Galega do Ensino. 1998; 19: 49-73.

Akunna JC, Bizeau C, Moletta, R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. Water Research. 1993; 27(8): 1303-12.

Ling J, Chen S. Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering. 2005; 33: 150-62.

Garrido JM, Van Benthum WAJ, Van Loosdrecht MC, Heijnen JJ. Influence of Dissolved Oxygen Concentration on Nitrite Accumulation in a Biofilm Airlift Suspension Reactor. Biotechnology and Bioengineering. 1997; 53: 168-78.

Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research. 2001; 35(3): 657-64.

Chen S, Ling J, Blancheton JP. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering. 2006; 34: 179-97.

Carrera Muyo J. Eliminación biológica de nitrógeno en un efluente con alta carga. Estudio de los parámetros del proceso y diseño de una depuradora industrial. Barcelona: Universidad Autónoma de Barcelona. 2001.

Okabe S, Oozawa Y, Hirata K, Watanabe Y. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Research. 1996; 30(7): 1563-72.

Michaud L, Blancheton JP, Bruni V, Piedrahita R. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering. 2006; 34: 224-33.

Cervantes F, Pérez J, Gómez J. Avances en la Eliminación Biológica del Nitrógeno de las Aguas Residuales. Revista Latinoamericana de Microbiología. 2000; 42: 73-82.

Louzeiro NR, Mavinic DS, Oldham WK, Meisen A, Gardner IS. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor. Water research. 2002; 36(11): 2721-32.

Romero Rojas, J. Tratamiento de Aguas Residuales. Santafé de Bogotá: Escuela Colombiana de Ingeniería. 2000.

Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment – A Review. Eng. Life Sci. 2007; 7(1): 13-25.

Descargas

Publicado

2013-06-30

Cómo citar

1.
Cardenas Calvachi GL, Sanchez Ortiz IA. Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ. Salud [Internet]. 30 de junio de 2013 [citado 24 de abril de 2024];15(1). Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/375

Número

Sección

Artículo de Revisión