Uso de sensores inerciales en fisioterapia: Una aproximación a procesos de evaluación del movimiento humano

  • Julialba Castellanos-Ruíz Programa Fisioterapia, Universidad Autónoma de Manizales. Manizales, Colombia - Grupo Cuerpo Movimiento, Universidad Autónoma de Manizales. Manizales, Colombia http://orcid.org/0000-0003-3525-4484
  • Lina María Montealegre-Mesa Grupo Cuerpo Movimiento, Universidad Autónoma de Manizales. Manizales, Colombia http://orcid.org/0000-0001-8176-4608
  • Brahian Daniel Martínez-Toro Programa Fisioterapia, Universidad Autónoma de Manizales. Manizales, Colombia - Semillero de investigación TAMIF. Universidad Autónoma de Manizales. Manizales, Colombia http://orcid.org/0000-0002-4857-7330
  • Juan José Gallo-Serna Programa Fisioterapia, Universidad Autónoma de Manizales. Manizales, Colombia - Semillero de investigación TAMIF. Universidad Autónoma de Manizales. Manizales, Colombia http://orcid.org/0000-0002-6186-1862
  • Osvaldo Almanza-Fuentes Terapia Física. Universidad Autónoma del Estado de México. Ciudad de México, México http://orcid.org/0000-0002-9643-0691
Palabras clave: Fisioterapia, sensores inerciales, unidad de medición inercial, rehabilitación, evaluación en salud, movimiento

Resumen

Introducción: Los sensores inerciales o unidad de medición inercial (IMU) del inglés Inertial measurement unit, son pequeños dispositivos capaces de medir la aceleración lineal y la velocidad angular, siendo útiles en el área de la salud para la cuantificación y valoración objetiva del movimiento corporal humano. Objetivo: Analizar la información sobre el uso de sensores inerciales como una aproximación a los procesos de evaluación del movimiento corporal humano. Materiales y métodos: Se realizó búsqueda en bases de datos, empleando términos: sensores inerciales, salud, fisioterapia, acelerómetro, actividad física, movimiento y rehabilitación, y sus combinaciones. Como criterios de exclusión se tuvo: artículos exclusivos del campo de ingeniería con información no aplicable a fisioterapia. Resultados: Una IMU es compatible con aplicaciones (APP), con el objetivo de obtener datos de movimiento tridimensionales y como evaluación e intervención, o que permita cuantificar los resultados de la acción motora. Conclusiones: Las IMU tienen amplias posibilidades en áreas afines a la rehabilitación y otras referentes al entrenamiento y el área deportiva; por lo, cual es necesario estandarizar protocolos que permitan la medición de patrones motores que favorezcan los procesos de rehabilitación.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Betances Reinoso FA, López Montes T, Rodríguez Ontiveros VM, Chiesa Estomba C. Análisis de la marcha y el equilibrio mediante el uso de sensores inerciales: estudio prospectivo, longitudinal, no aleatorio. cysa [Internet]. 3 de marzo de 2020 [citado 4 de marzo de 2020];4(1):11-6. Disponible en: https://revistas.intec.edu.do/index.php/cisa/article/view/1671

Martínez Méndez R, Portillo Rodríguez O, Romero Huertas M, Vilchis González A. Uso de sensores inerciales en la medición y evaluación de movimiento humano para aplicaciones en la salud. Ideas en ciencia. Editorial: Programa Editorial de la UAEM2016;37(Informe final). Universidad de Chile: “Uso de sensores inerciales como herramienta complementaria en Estudios de Puestos de Trabajo (EPT) en Chile, para la medición cuantitativa de movimiento repetitivo como factor de riesgo en la calificación de patologías músculo- esqueléticas de extremidades superiores” ACHS 210-2017.

Sanz, J., & Arbeláez Salazar, O. (2004). Determinación de la aceleración, velocidad y desplazamiento utilizando acelerómetros micromaquinados. Scientia Et Technica, 1(24). https://doi.org/10.22517/23447214.7291.

López-Nava IH., Arnrich B., Muñoz-Mendez A., Güneysu A. Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors. J Med Syst 41, 7 (2017). https://doi.org/10.1007/s10916-016-0645-8.

Gleadhill S, Bruce J, James D. The development and validation of using inertial sensors to monitor postural change in resistance exercise $. J Biomech [Internet]. 2016;49(7):1259–63. Available from: http://dx.doi.org/10.1016/j.jbiomech.2016.03.012

Santos TMO, Barroso MFS, Ricco RA, Nepomuceno EG, Alvarenga ÉLFC, Penoni ÁCO, et al. A low-cost wireless system of inertial sensors to postural analysis during human movement. Meas J Int Meas Confed [Internet]. 2019; 148:106933. Available from: https://doi.org/10.1016/j.measurement.2019.106933

Ong ZC, Seet YC, Khoo SY, Noroozi S. Development of an economic wireless human motion analysis device for quantitative assessment of human body joint. Meas J Int Meas Confed [Internet]. 2018;115(August 2017):306–15. Available from: http://dx.doi.org/10.1016/j.measurement.2017.10.056

Aguilar Cordero MJ, López AMS, Barrilao RG. Descripción del acelerómetro como método para valorar la actividad física en los diferentes periodos de la vida; revisión sistemática A METHOD TO ASSESS PHYSICAL ACTIVITY IN DIFFERENT PERIODS OF LIFE; SYSTEMATIC. 2014;29(6):1250–61.

Lee JB, Mellifont RB, Burkett BJ. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J Sci Med Sport. 2010 Mar;13(2):270-3. doi: 10.1016/j.jsams.2009.01.005. Epub 2009 Jul 1. PMID: 19574098.

Bötzel K, Olivares A, Cunha JP, Górriz Sáez JM, Weiss R, Plate A. Quantification of gait parameters with inertial sensors and inverse kinematics. J Biomech. 2018; 72:207–14.

Li G, Liu T, Yi J. Wearable Sensor System for Detecting Gait Parameters of Abnormal Gaits: A Feasibility Study. IEEE Sens J. 2018;18(10):4234–41.

Proessl F, Swanson CW, Rudro T, Fling BW, Tracy BL. Gait & Posture Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk. 2018;64(March):63–7.

Tereso A, Martins MM, Santos CP. Evaluation of gait performance of knee osteoarthritis patients after total knee arthroplasty with different assistive devices. 2015;31(3):208–17.

Ferreira CVL., Rabelo AG, Vieira MF, Pereira AA, Andrade ADO. Gait variability and symmetry assessment with inertial sensors for quantitative discrimination of Trendelenburg sign in total hip arthroplasty patients: a pilot study based on convenience sampling. 2018;34(1):65–72.

Ruiz-Olaya, Andrés F., Callejas-Cuervo, Mauro, & Lara-Herrera, Claudia N. Wearable low-cost inertial sensor-based electrogoniometer for measuring joint range of motion. DYNA. 2017;84(201), 180-185. https://dx.doi.org/10.15446/dyna.v84n201.59054

Burns D., Leung N., Hardisty M., Whyne C., Henry P., McLachlin St. Manuscript A. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch. arXiv:1802.01489v2 [cs.HC] 28 Feb 2018.

Burboa J, Bahamonde M, Inostroza M, Lillo P, Barahona M, Palet M, et al. Efecto de un entrenamiento deportivo en el compartimiento angular de la extremidad inferior en niños futbolistas de entre 11 y 12 años. 2017;31(3):128–33.

Monroy EB, Rodriguez AP, Estevez ME, Quero JM. Fuzzy Monitoring of In-bed Postural Changes for the Prevention of Pressure Ulcers using Inertial Sensors Attached to Clothing. J Biomed Inform [Internet]. 2020;103476. Available from: https://doi.org/10.1016/j.jbi.2020.103476

Mantilla A. Usos de los acelerómetros en fisioterapia: una revisión de la literatura uses of accelerometers in physiotherapy: a review of the literature. 2017;6(2):38–45.

Leardini A, Lullini G, Giannini S, Berti L, Ortolani M, Caravaggi P. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis. J Neuroeng Rehabil. 2014 Sep 11; 11:136. doi: 10.1186/1743-0003-11-136. PMID: 25212257; PMCID: PMC4169865.

Gómez Espinosa A, Espinosa-Castillo N, Valdes B. Foot-Mounted Inertial Measurement Units-Based Device for Ankle Rehabilitation.2018;10(8): 2032.Doi:10.3390/app8112032.

Yasuma S, Nozaki M, Murase A, Kobayashi M, Kawanishi Y, Fukushima H, Takenaga T, Yoshida M, Kuroyanagi G, Kawaguchi Y, Nagaya Y, Murakami H. Anterolateral ligament reconstruction as an augmented procedure for double-bundle anterior cruciate ligament reconstruction restores rotational stability: Quantitative evaluation of the pivot shift test using an inertial sensor. Knee. 2020 Mar;27(2):397-405. doi: 10.1016/j.knee.2020.02.015. Epub 2020 Mar 13. PMID: 32178972.

Kim KJAE, Gailey R, Agrawal V, Gaunaurd I, Feigenbaum L,Bennett C, et al. Quantification of agility testing with inertial sensors after a knee injury. Med Sci Sports Exerc. 2020;52(1):244–51.

Wilches EC, López ME, Arango GP. Rehabilitación funcional del paciente neurológico en la UCI. Guía Neurológica 6 - La unidad de cuidado intensivo 2004.Capítulo 7 p: 119-142.

Beange KHE, Chan ADC, Beaudette SM, Graham RB. Concurrent validity of a wearable IMU for objective assessments of functional movement quality and control of the lumbar spine. J Biomech. 2019; 97:109356. doi: 10.1016/j.jbiomech.2019.109356

Ganesan Y, Gobee S, Durairajah V. Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor. Procedia - Procedia Comput Sci [Internet]. 2015;76(Iris):53–9. Available from: http://dx.doi.org/10.1016/j.procs.2015.12.275

Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil. 2017 Mar 11;14(1):20. doi: 10.1186/s12984-017-0229-y. PMID: 28284228; PMCID: PMC5346195.

Johnston W, O’Reilly M, Argent R, Caulfield B. Reliability,Validity and Utility of Inertial Sensor Systems for Postural Control Assessment in Sport Science and Medicine Applications: A Systematic Review [Internet]. Vol. 49, Sports Medicine. Springer International Publishing; 2019. 783–818 p. Available from: https://doi.org/10.1007/s40279-019-01095-9

Li R, Jumet B, Ren H, Song W, Tse ZTH. An inertial measurement unit tracking system for body movement in comparison with optical tracking. Proc Inst Mech Eng H. 2020 Jul;234(7):728-737. doi: 10.1177/0954411920921695. Epub 2020 May 18. PMID: 32419605.

Liu K, Yan J, Liu Y, Ye M. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training. J Healthc Eng. 2018 Feb 11; 2018:6570617. doi: 10.1155/2018/6570617. PMID: 29610656; PMCID: PMC5828652.

Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors (Switzerland). 2019;19(24):1–9.

Gerber CN, Carcreff L, Paraschiv-Ionescu A, Armand S, Newman CJ. Reliability of single-day walking performance and physical activity measures using inertial sensors in children with cerebral palsy. Ann Phys Rehabil Med. 2019;(2018):2–7.

Wolff A, Sama A, Lenhoff M, Daluiski A. The use of wearable inertial sensors effectively quantify arm asymmetry during gait in children with unilateral spastic cerebral palsy. J Hand Ther [Internet]. 2020;2–3. Available from: https://doi.org/10.1016/j.jht.2020.03.026

Oubre B, Daneault JF, Jung HT, Whritenour K, Miranda JGV, Park J, et al. Estimating Upper-Limb Impairment Level in Stroke Survivors Using Wearable Inertial Sensors and a Minimally-Burdensome Motor Task. Vol. 28, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2020. p. 601–11.

Clemens S, Kim KJ, Gailey R, Kirk-Sanchez N, Kristal A, Gaunaurd I. Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation. Clin Biomech [Internet]. 2020;72(December 2019):102–7. Available from: https://doi.org/10.1016/j.clinbiomech.2019.12.007

Montoya-Leal V, Pérez VZ. Valoración cuantitativa para la reincorporación ocupacional Quantitative assessment for the occupational reintegration. 2016;32(2):319–36.

Carnaz L, Moriguchi CS, de Oliveira AB, Santiago PRP, Caurin GAP, Hansson GÅ, et al. A comparison between flexible electrogoniometers, inclinometers and three-dimensional video analysis system for recording neck movement. Med Eng Phys [Internet]. 2013;35(11):1629–37. Available from: http://dx.doi.org/10.1016/j.medengphy.2013.05.014

Gordt K, Gerhardy T, Najafi B, Schwenk M. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology. 2017;64(1):74–89.

Saber-sheikh K, Bryant EC, Glazzard C, Hamel A, Lee RYW. Feasibility of using inertial sensors to assess human movement. Man Ther [Internet]. 2010;15(1):122–5. Available from: http://dx.doi.org/10.1016/j.math.2009.05.009

Fantozzi S, Giovanardi A, Borra D, Gatta G. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors. PLoS One. 2015 Sep 14;10(9):e0138105. doi: 10.1371/journal.pone.0138105. PMID: 26368131; PMCID: PMC4569370.

Leirós-Rodríguez R, Arce ME, García-Soidán ASJL. Identificación de puntos de referencia anatómicos para la valoración del equilibrio mediante dispositivos cinemáticos. Fisioterapia [Internet]. 2015;37(5):223–9. Available from: http://dx.doi.org/10.1016/j.ft.2014.10.006

Zucchi B, Mangone M, Agostini F, Paoloni M, Petriello L, Bernetti A, et al. Movement Analysis with Inertial Measurement Unit Sensor after Surgical Treatment for Distal Radius Fractures. Biores Open Access. 2020;9(1):151–61.

Mundt M, Thomsen W, David S, Dupré T, Bamer F, Potthast W, et al. Assessment of the measurement accuracy of inertial sensors during different tasks of daily living. J Biomech [Internet]. 2019; 84:81–6. Available from: https://doi.org/10.1016/j.jbiomech.2018.12.023

Tulipani L, Boocock MG, Lomond KV, El-Gohary M, Reid DA, Henry SM. Validation of an Inertial Sensor System for Physical Therapists to Quantify Movement Coordination During Functional Tasks. J Appl Biomech. 2018 Feb 1;34(1):23-30. doi: 10.1123/jab.2016-0139. Epub 2018 Feb 7. PMID: 28787248.

Celletti C, Mollica R, Ferrario C, Galli M, Camerota F. Functional evaluation using inertial measurement of back school therapy in lower back pain. Sensors (Switzerland). 2020;20(2):1–7.

Abdollahi M, Ashouri S, Abedi M, Azadeh-Fard N, Parnianpour M, Khalaf K, Rashedi E. Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors (Basel). 2020 Jun 26;20(12):3600. doi: 10.3390/s20123600. PMID: 32604794; PMCID: PMC7348921.

Cuesta-Vargas AI, William JM. Estudio de la cinemática y fiabilidad inter e intraterapeutas de la manipulación vertebral cervical basada en sensores inerciales. 2011;33(1):25–30.

Yang P, Xie L, Wang C, Lu S. Demo: IMU-Kinect: A Motion Sensor-based Gait Monitoring System for Intelligent Healthcare. UbiComp/ISWC 2019- - Adjun Proc 2019 ACM Int Jt Conf Pervasive Ubiquitous Comput Proc 2019 ACM Int Symp Wearable Comput. 2019;350–3.

Sigward SM, Chan MSM, Lin PE. Characterizing knee loading asymmetry in individuals following anterior cruciate ligament reconstruction using inertial sensors. Gait Posture [Internet]. 2016; 49:114–9. Available from: http://dx.doi.org/10.1016/j.gaitpost.2016.06.021

Kim JY, Park G, Lee SA, Nam Y. Analysis of machine Learning based assessment for elbow spasticity using inertial sensors. Sensors (Switzerland). 2020;20(6):1–15.

Gaetani F, de Fazio R, Zappatore GA, Visconti P. A prosthetic limb managed by sensors-based electronic system: Experimental results on amputees. Bull Electr Eng Informatics. 2020;9(2):514–24.

Alizadegan A, Behzadipour S. Shoulder and elbow joint angle estimation for upper limb rehabilitation tasks using low-cost inertial and optical sensors. J Mech Med Biol. 2017;17(2):1–20.

Bavan L, Surmacz K, Beard D, Mellon S, Rees J. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study. Gait Posture [Internet]. 2019;70(February):211–7. Available from: https://doi.org/10.1016/j.gaitpost.2019.03.008

Publicado
2020-12-30
Cómo citar
Castellanos-Ruíz, J., Montealegre-Mesa, L., Martínez-Toro, B., Gallo-Serna, J., & Almanza-Fuentes, O. (2020). Uso de sensores inerciales en fisioterapia: Una aproximación a procesos de evaluación del movimiento humano. Universidad Y Salud, 23(1), 55 - 63. https://doi.org/10.22267/rus.212301.214
Sección
Artículo de Revisión