COVID-19 y la pandemia global causada por un nuevo coronavirus

Autores/as

  • Mario Fernando Benavides-Rosero Centro de Estudios en Salud, Grupo de Investigación Salud Pública, Universidad de Nariño. Pasto, Colombia - Facultad de Odontología, Universidad Cooperativa de Colombia – Campus Pasto. Pasto, Colombia http://orcid.org/0000-0002-7800-2925

DOI:

https://doi.org/10.22267/rus.202203.203

Palabras clave:

Betacoronavirus, Infecciones por coronavirus, Glicoproteína de espiga del coronavirus, Síndrome respiratorio agudo grave, Inflamación

Resumen

Introducción: COVID-19 es una enfermedad respiratoria inédita que se reportó inicialmente como una neumonía atípica en diciembre de 2019. SARS-CoV-2, agente etiológico de esta patología, probablemente originado a partir de un virus de murciélago. La inesperada capacidad de transmisión y patogenicidad que adquirió este coronavirus transformó a COVID-19 en una pandemia de sintomatología variada y compleja. Objetivo: Analizar aspectos evolutivos, moleculares, biológicos, inmunológicos y epidemiológicos de esta enfermedad. Materiales y métodos: Se realizó una revisión narrativa de literatura científica publicada en Pubmed, sobre estos aspectos desde enero 2020. Resultados: SARS-CoV-2 es un nuevo coronavirus que utiliza su proteína superficial S para infectar células humanas que exhiben el receptor ACE2. Este patógeno se transmite por secreciones respiratorias e induce un incremento nocivo de mediadores químicos proinflamatorios en individuos vulnerables, reacción inmune conocida como tormenta de citoquinas. Esta respuesta hiper-inflamatoria es la causante de las lesiones alveolares que desencadenan la insuficiencia respiratoria observada en casos severos de COVID-19. Conclusiones: En individuos susceptibles, SARS-CoV-2 puede desencadenar una disfunción pulmonar que requiere soporte ventilatorio asistido y tratamiento con inmunosupresores. Se están desarrollando nuevas estrategias terapéuticas y de prevención para disminuir los elevados índices de contagio y la mortalidad asociados con COVID-19.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

World Health Organization. SARS : lessons from a new disease [Internet]. The World Health Report 2003 international. Geneva (Suiza): WHO Library Cataloguing-in-Publication Data; 2003. 71–82 p. Available from: https://www.who.int/whr/2003/en/whr03_en.pdf?ua

World Health Organization. SARS outbreak contained worldwide [Internet]. World Health Organization. Geneva (Suiza); 2003. Available from: https://www.who.int/mediacentre/news/releases/2003/pr56/en/

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med [Internet]. 2020 Apr 17;26(4):450–2. Available from: http://www.nature.com/articles/s41591-020-0820-9

Ball P, Maxmen A. The epic battle against coronavirus misinformation and conspiracy theories. Nature [Internet]. 2020 May 27;581(7809):371–4. Available from: http://www.nature.com/articles/d41586-020-01452-z

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med [Internet]. 2020 Mar 26;382(13):1199–207. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2001316

Phelan AL, Katz R, Gostin LO. The Novel Coronavirus Originating in Wuhan, China. JAMA [Internet]. 2020 Feb 25;323(8):709. Available from: https://jamanetwork.com/journals/jama/fullarticle/2760500

World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it [Internet]. World Health Organization. Geneva (Suiza); 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]. 2020 Feb;395(10224):565–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620302518

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature [Internet]. 2020 Mar 3;579(7798):265–9. Available from: http://www.nature.com/articles/s41586-020-2008-3

Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020 Mar 12;579(7798):270–3. Available from: http://www.nature.com/articles/s41586-020-2012-7

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med [Internet]. 2020 Feb 20;382(8):727–33. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2001017

Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell [Internet]. 2020 Apr;181(2):281-292.e6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420302622

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80- ) [Internet]. 2020 Mar 13;367(6483):1260–3. Available from: https://pubmed.ncbi.nlm.nih.gov/32075877/

Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol [Internet]. 2020 Apr 24;5(4):562–9. Available from: http://www.nature.com/articles/s41564-020-0688-y

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell [Internet]. 2020 May;181(4):894-904.e9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S009286742030338X

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature [Internet]. 2020 May 30;581(7807):215–20. Available from: http://www.nature.com/articles/s41586-020-2180-5

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature [Internet]. 2020 May 30;581(7807):221–4. Available from: http://www.nature.com/articles/s41586-020-2179-y

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020 Feb;395(10223):497–506. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620301835

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.

Casadevall A, Pirofski L. The convalescent sera option for containing COVID-19. J Clin Invest [Internet]. 2020 Mar 13;130(4):1545–8. Available from: https://www.jci.org/articles/view/138003

Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Burai Felix S, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep [Internet]. 2019;64(24):759–65. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm?s_cid=mm6924e2_w

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med [Internet]. 2020 Apr 30;382(18):1708–20. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2002032

Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity [Internet]. 2020 May;52(5):731–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761320301618

Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM, et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe. 2020;27(6):879-882.e2.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect [Internet]. 2020 Jun;80(6):607–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320301651

Weston S, Frieman MB. COVID-19: Knowns, Unknowns, and Questions. mSphere [Internet]. 2020 Mar 18;5(2):e00203-20. Available from: https://msphere.asm.org/content/5/2/e00203-20

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.

Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–1766.

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol [Internet]. 2015;1282:1–23. Available from: http://link.springer.com/10.1007/978-1-4939-2438-7_1

Gilbert GL. Commentary: SARS, MERS and COVID-19—new threats; old lessons. Int J Epidemiol [Internet]. 2020 Jun 1;49(3):726–8. Available from: https://academic.oup.com/ije/article/49/3/726/5828441

Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. 2020;10(7):1228–38.

McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6(8):2991–3018.

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;S1684-1182(20):0–4.

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325–8.

Zhang YZ, Holmes EC. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell. 2020;181(2):223–7.

McBride R, Fielding BC. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses [Internet]. 2012;4(11):2902–2923. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509677/pdf/viruses-04-02902.pdf

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914-921.e10.

Astuti I, Ysrafil Y. Severe Acute Respiratory Syndrome Coronovairus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes Metab Syndr. 2020;14(4):407–412.

Hamming I, Timens W, Bulthuis M, Lely A, Navis G, Van Goor H. Tissue distribution of ACE" protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol [Internet]. 2004;203(2):631–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167720/

Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(45):1–7.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):1–9.

Wang, C., Li, W., Drabek, D. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun [Internet]. 2020 May; 11;2251:e1-e6. Available from: https://www.nature.com/articles/s41467-020-16256-y#citeas

Wrapp, D., De Vlieger, D., Corbett, K. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell [Internet]. 2020 May; 181(5):1004-1015. Available from: https://www.cell.com/cell/pdf/S0092-8674(20)30494-3.pdf

Pinto D, Park Y, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020;583:290–295.

Wu, Y., Wang, F., Shen, C. et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science [Internet]. 2020 Jun; 368(6496):1274-1278. Available from: https://science.sciencemag.org/content/368/6496/1274?utm_campaign=fr_sci_2020-05-13&et_rid=33950910&et_cid=3325009

Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z, Xia J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect [Internet]. 2020 Jul;81(1):e1-e5. Available from: https://www.journalofinfection.com/article/S0163-4453(20)30113-4/pdf

Wang, M., Cao, R., Zhang, L. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res [Internet]. 2020 Jan; 30: 269–271. Available from: https://www.nature.com/articles/s41422-020-0282-0#citeas

Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax [Internet]. 2004 Mar; 59(3):252-256. doi:10.1136/thorax.2003.012658 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1746980/pdf/v059p00252.pdf

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell [Internet]. 2020 Apr;181(2):271-280.e8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420302294

Academy of Medical Sciences, Brithish Society of Immunology. COVID-19 immunology research What do we know and what are the research priorities? [Internet]. Reino Unido; 2020. Available from: https://www.immunology.org/sites/default/files/Final_COVID-19_Immunology_report.pdf

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet [Internet]. 2020 Mar;395(10229):1033–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620306280

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med [Internet]. 2020;46(5):846–8. Available from: https://doi.org/10.1007/s00134-020-05991-x

Niu P, Zhang S, Zhou P, Huang B, Deng Y, Qin K, et al. Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient. J Infect Dis [Internet]. 2018 Sep 8;218(8):1249–60. Available from: https://academic.oup.com/jid/article/218/8/1249/5017222

Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat Med. 2004;10:871–875.

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity [Internet]. 2020 Apr;52(4):583–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1074761320301205

Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov [Internet]. 2020;19(5):305–6. Available from: http://dx.doi.org/10.1038/d41573-020-00073-5

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int [Internet]. 2020 May;97(5):829–38. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0085253820302556

World Health Organization. Landscape analysis of therapeutics as 21st March 2020 [Internet]. Geneva (Suiza); 2020. Available from: https://www.who.int/blueprint/priority-diseases/key-action/Table_of_therapeutics_Appendix_17022020.pdf

Casillo GM, Mansour AA, Raucci F, Saviano A, Mascolo N, Iqbal AJ, et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome? Pharmacol Res [Internet]. 2020 Jun;156(104791):104791. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043661820310999

Lu C-C, Chen M-Y, Lee W-S, Chang Y-L. Potential therapeutic agents against COVID-19: What we know so far. J Chinese Med Assoc [Internet]. 2020 Jun 1;83(6):534–6. Available from: https://journals.lww.com/10.1097/JCMA.0000000000000318

Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19? Nat Rev Immunol [Internet]. 2020;20(6):343–4. Available from: http://dx.doi.org/10.1038/s41577-020-0320-7

World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19 [Internet]. Geneva (Suiza); 2020 Feb. Available from: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19

Burns JC, Glodé MP. Kawasaki syndrome. Lancet [Internet]. 2004 Aug;364(9433):533–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673604168141

Newburger JW, Takahashi M, Burns JC. Kawasaki Disease. J Am Coll Cardiol [Internet]. 2016 Apr;67(14):1738–49. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109716007130

Deza Leon MP, Redzepi A, McGrath E, Abdel-Haq N, Shawaqfeh A, Sethuraman U, et al. COVID-19–Associated Pediatric Multisystem Inflammatory Syndrome. J Pediatric Infect Dis Soc [Internet]. 2020 Jul 13;9(3):407–8. Available from: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-343299

DeBiasi RL, Song X, Delaney M, Bell M, Smith K, Pershad J, et al. Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region. J Pediatr. 2020;223:199–203.e1.

Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, et al. COVID-19 and Kawasaki Disease: Novel Virus and Novel Case. Hosp Pediatr [Internet]. 2020 Jun;10(6):537–40. Available from: http://hosppeds.aappublications.org/lookup/doi/10.1542/hpeds.2020-0123

Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet [Internet]. 2020 May;395(10237):1607–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310941

Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, et al. Transmission of SARS-CoV-2 in Domestic Cats. N Engl J Med [Internet]. 2020 Aug 6;383(6):592–4. Available from: http://www.nejm.org/doi/10.1056/NEJMc2013400

Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci Technol [Internet]. 2020 Jun 2;54(6):635–8. Available from: https://www.tandfonline.com/doi/full/10.1080/02786826.2020.1749229

Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med [Internet]. 2020 Apr 16;382(16):1564–7. Available from: http://www.nejm.org/doi/10.1056/NEJMc2004973

Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature [Internet]. 2020 Jun 27;582(7813):557–60. Available from: http://www.nature.com/articles/s41586-020-2271-3

Ningthoujam R. COVID 19 can spread through breathing, talking, study estimates. Curr Med Res Pract [Internet]. 2020 May;10(3):132–3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S235208172030057X

Böhmer MM, Buchholz U, Corman VM, Hoch M, Katz K, Marosevic D V, et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infec Dis [Internet]. 2020 Aug;20(8):920–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309920303145

He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med [Internet]. 2020 May 15;26(5):672–5. Available from: http://www.nature.com/articles/s41591-020-0869-5

Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open [Internet]. 2020 May 7;3(5):e208292. Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2765654

Groß R, Conzelmann C, Müller JA, Stenger S, Steinhart K, Kirchhoff F, et al. Detection of SARS-CoV-2 in human breastmilk. Lancet [Internet]. 2020 Jun;395(10239):1757–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620311818

Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, et al. SARS-CoV-2 productively infects human gut enterocytes. Science (80- ) [Internet]. 2020 Jul 3;369(6499):50–4. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abc1669

Publicado

2020-12-10

Cómo citar

1.
Benavides-Rosero MF. COVID-19 y la pandemia global causada por un nuevo coronavirus. Univ. Salud [Internet]. 10 de diciembre de 2020 [citado 27 de abril de 2024];22(3):299-314. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/5530

Número

Sección

Artículo de Revisión