Genotoxicidad de los contaminantes prioritarios en el aire de Villa del Rosario - Norte de Santander, Colombia

Alfonso Quijano Parra, Mónica Juliana Quijano Vargas, Iván Meléndez Gélvez



Introducción: Las partículas en suspensión PM2.5 son capaces de penetrar profundamente en el pulmón y se componen de mezclas químicas complejas, incluyendo mutágenos y carcinógenos como los hidrocarburos aromáticos policíclicos (HAPs); la inhalación de altas concentraciones de partículas en suspensión (PM2.5) causa enfermedades respiratorias, cardíacas y pulmonares. Objetivo: Identificar los contaminantes prioritarios y estudiar mediante el ensayo cometa, la actividad genotóxica del material particulado fracción respirable PM2.5 del aire del municipio de Villa del Rosario-Norte de Santander. Materiales y métodos: Las muestras del aire (PM2.5) de Villa del Rosario, fueron recolectadas con un muestreador Partisol 2025 plus utilizando filtros pallflex mediante muestreos por 24 horas con una frecuencia de tres días. La materia orgánica de los filtros de PM2.5 fue extraída por ultrasonido con diclorometano obteniéndose el extracto global. Este se separó en tres fracciones por cromatografía en columna de gel (CPG) de sílice utilizando n -hexano, n-hexano-diclorometano y diclorometano, como los eluyentes correspondientes. Los hidrocarburos aromáticos policíclicos (HAPs) de cada fracción se determinaron por cromatografía de gases con detector de ionización en llama (FID). Resultados: Por primera vez se reporta actividad genotóxica evaluada con el ensayo cometa, asociada con el PM2.5 del aire del municipio de Villa del Rosario y se identifican los contaminantes prioritarios extraídos con diclorometano, presentes en la materia orgánica de una vía vehicular en Villa del Rosario, Norte de Santander. Conclusión: Los contaminantes prioritarios encontrados en el aire de Villa del Rosario son: Benzo(a) pireno, Naftaleno, Benzo(a) antraceno, Criseno, Benzo(b)fluoranteno, Benzo(k)fluoranteno y Dibenzo(a,h) antraceno, contaminantes altamente peligrosos por presentar actividad mutagénica y genotóxica.


Introduction: The suspended particles PM2.5 are able to penetrate deep into the lung and consist of complex chemical mixtures, including mutagens and carcinogens such as polycyclic aromatic hydrocarbons (PAHs). The inhalation of high concentrations of particulate matter (PM2.5) causes respiratory, heart and lung diseases. Objective: To identify priority pollutants and study the genotoxic activity of breathable particulate matter PM2.5 air by the comet assay in the municipality of Villa del Rosario-Norte de Santander. Materials and methods: The air samples (PM2.5) of Villa del Rosario were collected with 2025 Partisol plus sampler by using filters pallflex through sampling for 24 hours with a frequency of three days. The organic matter of the PM2.5 filters was extracted by ultrasound with dichloromethane to obtain the overall extract. This was separated into three fractions by gel column chromatography (GPC) of silica using n-hexane, n-hexane-dichloromethane and dichloromethane as the corresponding eluents. The polycyclic aromatic hydrocarbons (PAHs) of each fraction were determined by gas chromatography with flame ionization detector (FID). Results: For the first time genotoxic activity assessed by the comet assay is reported, associated with the PM2.5 air in the municipality of Villa del Rosario and the priority pollutants extracted with dichloromethane were identified, which were present in the organic matter in a vehicular route in Villa del Rosario, Norte de Santander. Conclusion: The priority pollutants found in the air of Villa del Rosario are: Benzo (a) pyrene, Naphthalene, Benzo (a) anthracene, chrysene Benzo (b) fluoranthene, benzo (k) fluoranthene and dibenzo (a, h) anthracene, which are highly hazardous pollutants to present mutagenic and genotoxic activity.

Palabras clave

Genotoxicidad; PM2.5; cromatografía de gases; contaminantes del aire; ensayo cometa; Colombia; Genotoxicity; PM2.5; gas chromatography; air pollutants; comet assay; Colombia

Texto completo:



Carreras Hebe A, Calderón-Segura ME, Gómez-Arroyo S, Murillo-Tovar MA, Amador-Muñoz O. Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environmental Pollution. 2013; 178:403-410.

Ostro BD, Broadwin R, Lipsett MJ.Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. Journal of Exposure Analysis and Environmental Epidemiology. 2000; 10:412-419

Boffetta P, Nyberg F. Contribution of environmental factors to cancer risk. British Medical Bulletin. 2003; 68:71-94

Cohen A J, Ross Anderson H, Ostra B, Pandey KD, Krzyzanowski M, Künzli N et al. The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health. 2005; Part A 68:1–7.

U.S. EPA. Air quality criteria for particulate matter. Washington:2004

Massoud R, Shihadeh AL, Roumié M, Youness M, Gerard J, Saliba N, et al. Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmos. Res. 2011; 101: 893–901

Xu L, Chen X, Chen J, Zhang F, He C, Zhao J et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 2012; 104–105: 264–272.

Chen YC, Lee WJ, Uang SN, Lee SH, Tsai PJ. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment. Atmos. Environ. 2006; 40:7589–7597.

Xinhui Bi, Bernd RTS, Sheng Guoying, Ma Shexia, Jiamo Fu. Composition and major sources of organic compounds in urban aerosols. Atmos. Res. 2008; 88:256–265.

Tsai PJ, Shih TS, Chen HL, Lee WJ, Lai CH, Liou SH.Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos. Environ. 2004; 38:333–343.

Dimashki M, Fadel A, Baba S, AlNouri M, Assad N. Measurements of polycyclic aromatic hydrocarbons (PAH), heavy metals, and gaseous pollutants in polluted airsheds over some Syrian cities. Proceedings of the Arab school of science & technology workshop on ambient air quality, Kuwait. 2007

Orecchio S, Papuzza V. Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel, J. Hazard. Mater. 2009; 164:876–883.

Lim MCH, Ayoko GA, Morawska L, Ristovski ZD, Jayaratne ER. Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars. Atmos. Environ. 2007; 41:50–160.

Belpomme D, Irigaray P, Hardell L, Clapp R, Montagniere L, Epsteinf S, et al. The multitude and diversity of environmental carcinogens. Environ Res. 2007:105:414–29.

Douglas MJ, Watkins SJ, Gorman DR, Higgins M.Are cars the new tobacco? J. Public Health (Oxf). 2011; 33:160–169.

Manoli E, Kouras A, Samara C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere. 2004; 56:867–878

Hanedar A, Alp K, Kaynak B, Baek J, Avsar E, Odman MT. Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmos. Res. 2011; 99:391–399.

Fang GC, Chang CN, Wu YS,Fu PPC,Yang IL,Chen MH. Characterization identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci. Total Environ. 2004; 327:135–146.

Culotta L, Gianguzza A, Orecchio S.Leaves of nerium oleander L. as bioaccumulators of polycyclic aromatic hydrocarbons (PAH) in the air of Palermo (Italy). Extration. GC–MS analysis, distribution, sources, Polycyclic Aromat. Compd. 2005; 25:327–344.

Lu H, Chen S. Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environ. Pollut. 2008; 152: 569–575.

Slezakova K, Castro D, Delerue–Matos C, Alvim– Ferraz MC, Morais S,Pereira MC.Air pollution fromtraffic emissions in Oporto, Portugal: Health and environmental implications. Microchem. J. 2011; 99:51–59

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-91.

IARC. Monographs on the evaluation of carcinogenic risk to human: Air pollution, Part 1, vol 92, Some Non‐Heterocyclic PAHs and related industrial exposures. 2008.

IARC. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, IARC Monogr. Eval. Carcinog. Risk. Hum. 2002; 82:367.

Poster DL, Schantz MM, Sander LC, Wise SA. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006; 386:859–881.

Umbuzeiro GA, Franco A, Martins MH, Kummrow F, Carvalho L, Schmeiser HH et al. Mutagenicity and DNA adduct formation of PAH, nitro‐PAH, and oxy‐PAH fractions of atmospheric particulate matter from Sao Paulo, Brazil. Mutation Research‐Genetic Toxicology and Environmental Mutagenesis. 2008; 652:72‐80.

Dong TTT, Lee BK. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere. 2009; 74:1245‐1253.

RoC. National toxicology program (NTP): Report on carcinogens. U. S. Department of health and human services, public health service. National toxicology program (NTP). 2009.

Hayakawa K. Atmospheric pollution and Its countermeasure in east Asia from the viewpoint of polycyclic aromatic hydrocarbons. Journal of Health Science. 2009; 55: 870‐878.

Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E,Bleux N et al. Seasonal and site‐specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment.2006; 40 (4):771‐785.

Koss G, Tesseraux I. Toxicology. San Diego: Academic Press; 1999: 603‐44.

Zhang Y, Yang B, Gan J, Liu C, Shu X, Shu J. Nitration of particleassociated PAHs and their derivatives (nitro‐, oxy‐, and hydroxy‐PAHs) with NO3 radicals. Atmospheric Environment. 2011; 45:2515‐2521.

Tan JH, Bi XH, Duan JC, Rahn KA, Sheng GY, Fu JM. Seasonal variation of particulate polycyclic aromatic hydrocarbons associated with PM10 in Guangzhou, China. Atmos. Res. 2006; 80(4):250–262.

International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risk to humans. Occupational exposures in petroleum refining; crude oil and major petroleum fuels. Lyon: Iarc Press. 1989;45

Smith DJT, Harrison RM. Polycyclic Aromatic Hydrocarbons in Atmospheric Particles, in: R.M. Harrison, R. Van Grieken (Eds.), Atmospheric Particles, John Wiley & Sons, New York, 1998.

Kuo CY, Cheng TW, Chen CY, Lee H. Correlation between theamounts of polycyclic aromatic hydrocarbons and mutagenicity of airborne particulate samples from Taichung City. Taiwan. Environ. Res. 1998; 78:43-49.

Amador-Muñoz O, Villalobos-Pietrini R, Agapito- Nadales MC, Munive-Colín Z, Hernández-Mena L, Sánchez-Sandoval M.Solvent extracted organic matter and polycyclic aromatic hydrocarbons distributed in size-segregated airborne particles in

a zone of México City: seasonal behavior and human exposure. Atmospheric Environment. 2010; 44:122-130.

Olcese LE, Toselli BM. Some aspects of air pollution in Córdoba, Argentina. Atmos. Env. 2002; 36:299-306.

Mi HH, Lee WJ,Tsai PJ, Chen CB. A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline. Environ. Heal. Perspect. 2001; 109 (12):1285–1290.

Enlaces refback

  • No hay ningún enlace refback.