Formative research in biotechnology: a critical review.

Authors

  • David Sebastián Jiménez Villota Universidad de Nariño
  • Jesús Insuasti Universidad de Nariño

DOI:

https://doi.org/10.22267/huellas.251122.42

Keywords:

biotechnology, didactics, formative research, teaching strategies, higher education.

Abstract

Biotechnology is a multidisciplinary field that combines fundamental sciences such as chemistry, biology, and physics, generating technological innovations capable of artificially modifying living organisms and giving rise to the concept of "biotechnoscience." This integrative approach has potential impacts on areas such as social welfare and economic development. However, its inclusion in higher education has been limited, reflecting a limited presence in classrooms and scarce research on specific pedagogical methods for its teaching. This article presents a critical review of formative research in biotechnology, analyzing various didactic and methodological strategies implemented in higher education programs. Through a systematic literature review with a qualitative approach, the most effective methodologies for developing scientific and technical competencies in university students were identified. The results underscore the importance of restructuring educational experiences by integrating advanced tools such as bioinformatics and implementing innovative methodologies in laboratories. Formative research in biotechnology enables students to apply theoretical knowledge in practical contexts, developing essential technical skills and fostering critical and innovative thinking. However, the effectiveness of these methodologies faces significant barriers, including limited access to optimal resources, traditional approaches in laboratories, and insufficient research training for faculty and students. Therefore, it is crucial to promote a more deeply rooted research culture in higher education institutions, thus ensuring comprehensive training that accurately addresses the current and future demands of the biotechnology field.

Downloads

Download data is not yet available.

References

Abuqamar, S., Alshannag, Q., Sartawi, A., & Iratni, R. (2015). Educational awareness of biotechnology issues among undergraduate students at the united arab emirates university. Biochemistry and Molecular Biology Education, 43(4), 283–293. https://doi.org/10.1002/bmb.20863.

Almanza-Arjona, Y., Vergara-Porras, B., García-Rivera, B., & Venegas-Andraca, S. (2019).

Research-Based approach to undergraduate Chemical Engineering Education. IEEE Global Engineering Education Conference, 180(4577), 125–127. https://doi.org/10.1038/180125a0.

Balasubramanian, A., & Chatterjee, J. (2022). Bioinformatics approach used in undergraduate research to predict siRNA as ZIKV therapeutics. Biochemistry and Molecular Biology Education, 50(2), 237–245. https://doi.org/10.1002/bmb.21605.

Balke, V., Grusenmeyer, L., & McDowell, J. (2021). Long-Term Outcomes of Biotechnology Student Participation in Undergraduate Research Experiences at Delaware Technical Community College. Scholarship and Practice of Undergraduate Research, 4(3), 5–12. https://doi.org/10.18833/spur/4/3/12.

Baranovskyy, M., & Baranovska, L. (2023). Formation of Research Competence in Students of Higher Education of the Second Master’S Level in the Process of Mastering the Profession. Scientific Bulletin of Flight Academy. Section: Pedagogical Sciences, 13, 18–25. https://doi.org/10.33251/2522-1477-2023-13-18-25.

Basu, U. (2023). An idea to explore: Introduction to research methods. Biochemistry and Molecular Biology Education, 51(5), 566–573. https://doi.org/10.1002/bmb.21758.

Beltrán, Ó. (2005). Revisiones sistemáticas de la literatura. Rincón Epidemiológico, 38(6), 855–857. https://doi.org/10.1068/ldmk-lee.

Bernardes, A. (2019). Biotecnologia : proposta de sequência didática de ensino investigativa como material de apoio para professores do e Ensino Médio. https://repositorio.unb.br/handle/10482/37340.

Bickford, N., Peterson, E., Jensen, P., & Thomas, D. (2020). Undergraduates interested in STEM research are better students than their peers. Education Sciences, 10(6). https://doi.org/10.3390/educsci10060150.

Chaari, A., Al-Ali, D., & Roach, J. (2020). Biochemistry course-based undergraduate research experience: Purification, characterization, and identification of an unknown lactate dehydrogenase isoenzyme. Biochemistry and Molecular Biology Education, 48(4), 369–380. https://doi.org/10.1002/bmb.21363.

Cortes, A., Oñate, J., & Rojas, L. (2017). PROPUESTA METODOLÓGICA: CURSO-TALLER PARA EL APRENDIZAJE SIGNIFICATIVO DE HONGOS MACROSCÓPICOS EN LA INSTITUCIÓN EDUCATIVA JOSÉ GUILLERMO CASTRO CASTRO DEL MUNICIPIO DE LA JAGUA DE IBIRICO- CESAR. Revista de La Asociación Colombiana de Ciencias Biológicas, 29, 38–48.

Crane, J., & Page, S. T. (2022). An undergraduate laboratory experiment with real-world applications: Utilizing templateless polymerase chain reaction and real-time polymerase chain reaction to test for SARS-CoV-2 RNA. Biochemistry and Molecular Biology Education, 50(1), 142–148. https://doi.org/10.1002/bmb.21593.

Desai, S. V., Bagewadi, Z. K., & Muddapur, U. M. (2019). An integrated pedagogical approach for effective teaching of research methodology for biotechnology engineering. Journal of Engineering Education Transformations, 33(2), 41–47. https://doi.org/10.16920/jeet/2019/v33i2/145469.

Espinel-Barrero, N. E., & Valbuena-Ussa, É. O. (2018). Aproximación al estatus epistemológico de la biotecnología: implicaciones didácticas TT - Approaching the Epistemológica! Status of Biotechnology: Didactic Implications TT - Aproximação ao status epistemológico da biotecnologia: implicações didáticas. Tecné, Episteme y Didaxis: TED, 43, 193–206. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-38142018000100193&lang=pt%0Ahttp://www.scielo.org.co/pdf/ted/n43/0121-3814-ted-43-193.pdf.

Finol de Franco, M., & Vera Solórzano, J. L. (2020). Paradigmas, enfoques y métodos de investigación: análisis teórico. Mundo Recursivo, 3(1), 1–24. https://www.atlantic.edu.ec/ojs/index.php/mundor/article/view/38.

Gao, L., & Guo, M. (2023). A course-based undergraduate research experience for bioinformatics education in undergraduate students. Biochemistry and Molecular Biology Education, 51(2), 189–199. https://doi.org/10.1002/bmb.21710.

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la Investigación (S. A. D. C. V. McGRAW-HILL / INTERAMERICANA EDITORES (ed.); 6th ed.).

Iannotta, D., Goncalves, J. P., Ghebosu, R. E., Gopalakrishnan, A., Cooper-White, J., & Wolfram, J. (2024). Transforming undergraduate laboratory courses with interlinked real-world challenges. Trends in Biotechnology, 42(1), 1–4. https://doi.org/10.1016/j.tibtech.2023.10.006.

Johnson, K. C., Sabel, J. L., Cole, J., Pruett, C. L., Plymale, R., & Reyna, N. S. (2022). From genetics to biotechnology: Synthetic biology as a flexible course-embedded research experience. Biochemistry and Molecular Biology Education, 50(6), 580–591. https://doi.org/10.1002/bmb.21662.

Kaufman, J. D. (2020). Work in progress: Improving student engagement in undergraduate bioinformatics through research contributions. ASEE Annual Conference and Exposition, Conference Proceedings, 2020-June.

Marcelino, L. V., & Marques, C. A. (2017). Abordagens Educacionais Das Biotecnologias No Ensino De Ciências Através De Uma Análise Em Periódicos Da Área. Investigações Em Ensino de Ciências, 22(1), 61. https://doi.org/10.22600/1518-8795.ienci2017v22n1p61.

Mintzes, J. J., & Walter, E. M. (2020). Active Learning in College Science: The Case for Evidence-Based Practice. In Active Learning in College Science: The Case for Evidence-Based Practice (pp. 1–1001). Springer Nature. https://doi.org/10.1007/978-3-030-33600-4.

Moreno, B., Muñoz, M., Cuellar, J., Domancic, S., & Villanueva, J. (2018). Revisiones Sistemáticas: definición y nociones básicas. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral, 11(3), 184–186. https://doi.org/10.4067/s0719-01072018000300184.

Ningrum, D. E. A. F., Rofiki, I., Melinda, V. A., Erfantinni, I. H., & Febriani, R. O. (2020). Development of biotechnology textbook based on bioinformatics research. Universal Journal of Educational Research, 8(11), 5188–5196. https://doi.org/10.13189/ujer.2020.081119.

Nordqvist, O., & Aronsson, H. (2019). It Is Time for a New Direction in Biotechnology Education Research. Biochemistry and Molecular Biology Education, 47(2), 189–200. https://doi.org/10.1002/bmb.21214.

Ocampo-López, C., Ramírez-Carmona, M., Rendón-Castrillón, L., & Vélez-Salazar, Y. (2019). Applied research in biotechnology as a source of opportunities for green chemistry start-ups. Sustainable Chemistry and Pharmacy, 11(December 2018), 41–45. https://doi.org/10.1016/j.scp.2018.12.005.

Orhan, T. Y., & Sahin, N. (2018). The impact of innovative teaching approaches on biotechnology knowledge and laboratory experiences of science teachers. Education Sciences, 8(4). https://doi.org/10.3390/educsci8040213.

Pao, C. H., Choi, S. T., Lok, Y., Dorrough, S., Abelseth, C., Shelton, J., & Rentas, A. (2021). Study of Student Oral Microbes. 22(2).

Peyton, B. M., & Skorupa, D. J. (2021). Integrating CUREs in Ongoing Research: Undergraduates as Active Participants in the Discovery of Biodegrading Thermophiles. Journal of Microbiology & Biology Education, 22(2). https://doi.org/10.1128/jmbe.00102-21.

Pieczynski, J. N., Deets, A., McDuffee, A., & Lynn Kee, H. (2019). An undergraduate laboratory experience using CRISPR-cas9 technology to deactivate green fluorescent protein expression in Escherichia coli. Biochemistry and Molecular Biology Education, 47(2), 145–155. https://doi.org/10.1002/bmb.21206.

Rendón-Castrillón, L., Ramírez-Carmona, M., & Ocampo-López, C. (2023). Training strategies from the undergraduate degree in chemical engineering focused on bioprocesses using PBL in the last decade. Education for Chemical Engineers, 44(May), 104–116.

https://doi.org/10.1016/j.ece.2023.05.008.

Restrepo, B. (2007). Conceptos y aplicaciones de la investigación formativa, y criterios para evaluar la investigación científica en sentido estricto. Documento CNA.(Http//Www. Cna. Gov. Co), 19. http://scholar.google.com/scholar?

hl=en&btnG=Search&q=intitle:Conceptos+y+Aplicaciones+de+la+Investigaci?n+Formativa+,+y+Criterios+para+Evaluar+la+Investigaci?n+cient?fica+en+sentido+estricto+.#0%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=in.

Ripoll, V., Godino-Ojer, M., & Calzada, J. (2023). Development of engineering skills in students of biotechnology: Innovation project “From laboratory to industry.” Education for Chemical Engineers, 43(January), 37–49. https://doi.org/10.1016/j.ece.2023.01.006.

Roa Acosta, R., & Valbuena Ussa, É. O. (2013). Incursión de la biotecnología en la educación: Tendencias e implicaciones. Revista Colombiana de Biotecnología, 15(2), 156. https://doi.org/10.15446/rev.colomb.biote.v15n2.41274.

Roberts, L. A., & Shell, S. S. (2023). A research program-linked, course-based undergraduate research experience that allows undergraduates to participate in current research on mycobacterial gene regulation. Frontiers in Microbiology, 13(January). https://doi.org/10.3389/fmicb.2022.1025250.

Rojas Arango, B. P., & Arroyo Ortega, A. (2021). Perspectiva hermenéutica y vigencia narrativa: Apuesta metodológica en Ciencias Sociales. Universitas Humanística, 89. https://doi.org/10.11144/javeriana.uh89.phvm.

Rulfs, J., Roberts, L., Buckholt, M., & Whitefleet-Smith, J. (2022). Redesigning Undergraduate Laboratories: From Recipes to Research. African Journal of Inter/Multidisciplinary Studies, 4(1), 97–112. https://doi.org/10.51415/ajims.v4i1.1015.

Shan, J., Shen, J., Dong, L., Xu, Y., Li, H., Zhong, L., & Tang, H. (2023). Better understanding of ageing research through a 12-week laboratory course for undergraduates majoring in biotechnology. Journal of Biological Education, 57(1), 24–35. https://doi.org/10.1080/00219266.2021.1877775.

Shelby, S. J. (2019). A course-based undergraduate research experience in biochemistry that is suitable for students with various levels of preparedness. Biochemistry and Molecular Biology Education, 47(3), 220–227. https://doi.org/10.1002/bmb.21227.

Tikhomirova, L. I. (2020). “Case studies” and research design in the formation of competencies for bachelors in the field of “Biotechnology.” Journal of Physics: Conference Series, 1691(1). https://doi.org/10.1088/1742-6596/1691/1/012151.

Uve, C., Estuardo, G., Hidalgo, C., Rocío, E., Superior, I., & Tsachila, T. (2022). Análisis conceptual a la didáctica de la investigación científica Conceptual analysis of the didactics of scientific research. Periodicidad: Semestral, 5(1), 2022.

Williams, L. C., Gregorio, N. E., So, B., Kao, W. Y., Kiste, A. L., Patel, P. A., Watts, K. R., & Oza, J. P. (2020). The Genetic Code Kit: An Open-Source Cell-Free Platform for Biochemical and Biotechnology Education. Frontiers in Bioengineering and Biotechnology, 8(August), 1–13. https://doi.org/10.3389/fbioe.2020.00941.

Yani, A., & Adiansyah, R. (2019). Developing Problem-Based Learning Module For Biotechnology Concepts. Jurnal Pendidikan Sains, 5(2), 46–56. https://doi.org/10.17977/jps.v5i2.9032

Published

2025-12-15

How to Cite

Jiménez Villota , D. S., & Insuasti, J. (2025). Formative research in biotechnology: a critical review. Revista Huellas, 11(2), 85–95. https://doi.org/10.22267/huellas.251122.42