Endogenización como mecanismo evolutivo para la transformación digital de las pymes de turismo de naturaleza
DOI:
https://doi.org/10.22267/rtend.222301.185Palabras clave:
Big Data; cadena turística; modelos econométricos; PYMES de turismo de naturaleza; transformación digitalResumen
El propósito del presente artículo es endogenizar la transformación digital en las PYMES de turismo de naturaleza en el departamento del Magdalena-Colombia, de aquí en adelante denominada región, en este sentido, el concepto de endogenización como mecanismo evolutivo hace referencia a la aplicación del modelo de elección discreta, como motor de análisis para las variables que se estudiarán dentro del modelo. El tipo de estudio fue cuantitativo, de nivel correlacional, la muestra fue de 386 agentes de la cadena turística; para la recolección de datos se utilizó un instrumento tipo encuesta con cinco factores, la escala utilizada tipo Likert. Para la extracción de los factores se utilizó el análisis factorial confirmatorio, utilizando ecuaciones estructurales, seguidamente se corre un modelo de elección discreta y posteriormente el análisis de los resultados. Entre los principales hallazgos se tienen que, las PYMES en la cadena turística que intentaron incorporar actividades de Big Data en los procesos de toma de decisiones, tienen mayores posibilidades de éxito en la transformación digital, además, se encontró evidencia estadística que sostiene que, la formación del personal en Data Science, contribuye significativamente con los procesos de Marketing y comercialización dentro de la PYME en esta región.
Descargas
Citas
(1) Addo, R. & Helo, P. (2016). Big data applications in operations/supply-chain management: A literature review. Computers and Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023
(2) Alfall, L., Marín J., García, C y Medina L., (2014). An analysis of the direct and mediated effects of employee commitment and supply chain integration on organizational performance. Revista Internacional de Economía de la Producción, 162, 242 – 257.
(3) Ahiaga, A. (2014). Dealing with construction cost overruns using data mining. Construction Management and Economics, 32, 682-694. https://doi.org/10.1080/01446193.2014.933854
(4) Anguiano, A. y Pancorbo, S. (2008). El marketing urbano como herramienta de apoyo a la gestión del turismo urbano de ciudad: estudio de un caso, el patrimonio industrial. Revista ACE, (9), pp. 739-748.
(5) Angus, D. & Rintel, J. (2013). Making sense of big text: a visual-first approach for analysing text data using Leximancer and Discursis International. Journal of Social Research Methodology, 16, 261 -267.
(6) Artigues, A., Cucchietti, F., Tripiana Montes, C., Vicente, D., Calmet, H., Marin, G., Houzeaux, G., & Vazquez, M. (2015). Scientific Big Data Visualization: a coupled tools approach. Supercomputing Frontiers and Innovations, 3, 4-18. doi: http://dx.doi.org/10.14529/jsfi140301
(7) Arunachalam, D., Kumar, N. & Kawalek, J. (2018). Understanding big data analytics capabilities in supply chainmanagement: unravelling the issues, challenges and implicationsfor practice. Transportation Research Part E: Logistics and Transportation Review, 114, 416–436.
(8) Bhimani, A. & Willcocks, L. (2014). Digitization, ‘Big Data’ and the transformation of accounting information. Accounting and Business Research, 44, 469-490, https://doi.org/10.1080/00014788.2014.910051
(9) Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes. International Journal of Operations & Production Management, 38(7), 1589–161.
(10) Chen, H., Chiang, R., & Storey, V. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36 (4), 1165-1188. doi:10.2307/41703503
(11) Chen, C., & Zhang, C. (2014). Data-intensive applications, challenges, techniques, and technologies: A survey on Big Data. Information Sciences, 275, 314–347. doi: 10.1016/j.ins.2014.01.015
(12) Chiang, D., Lin, C., & Chen, M. (2011). The adaptive approach for storage assignment by mining data of warehouse management system for distribution centers. Enterprise Information Systems, 5, 219-234.
(13) Desjardins, J. (2019). How much data is generated each day? News. https://enewswithoutborders.com/2019/04/23/how-much-data-is-generated-each-day/
(14) Dobre, C., & Xhafa, F. (2014). Intelligent services for Big Data science. Future Gener. Comput. Syst, 37, 267-281.
(15) Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
(16) Grover, V., Chiang, R. H., Liang, T., & Zhang, D. (2018). Creating strategic business value from big data analytics: a research framework. Journal of Management Information Systems, 35 (2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
(17) Hann, T. H., & Steurer, E. (1996). Much ado about nothing? Exchange rate forecasting: Neural networks vs. linear models using monthly and weekly data. Neurocomputing, 10, 323–339. https://doi.org/10.1016/0925-2312(95)00137-9
(18) Hazen, L. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. lnternational Journal of Production Economics, 154, 72-80.
(19) Hofmnn, E. (2017). Big data and supply chain decisions: the impact of volume, variety, and velocity properties on the bullwhip effect. Intenational Journal of Production Research, 55 (17), 5108–5126.
(20) Jagielska, I., & Jaworski, J. (1996). Neural network for predicting the performance of credit card accounts. Comput Econ, 9, 77–82. https://doi.org/10.1007/BF00115693
(21) Kubina, M., Varmus, M., & Kubinova, I. (2015). Use of big data for competitive advantage of company. Procedia Economics and Finance, 26, 561–565.
(22) Landon, M., & Michael A. (2016). Big Data and Intelligence: Applications, Human Capital, and Education. Journal of Strategic Security, (9), 92–121.
(23) Matt, C., Hess, T. & Benlian. A. (2015). Digital Transformation Strategies. Business Information Systems Engineering, 57(5), 339–343. DOI 10.1007/s12599-015-0401-5
(24) McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, 90, 60–128.
(25) Morakanyane, R., Grace, A., & O'Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives. Bled, Slovenia DOI:10.18690/978-961-286-043-1.30
(26) Müller, O., Fay, M. & Brocke, J., (2018). The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics. Journal of Management Information Systems, 35, 488-509. https://doi.org/10.1080/07421222.2018.1451955
(27) Nitzl, C., Roldán, J., & Cepeda, G. (2016). Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models. Econometrics, 116, 1849–1864.
(28) Ortiz, F., Cabrera, A., & López, F. (2013). Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales. Contaduría y Administración, 58, 203-225.
(29) Pietro, G. (2002). Technological change, labor markets, and ‘low-skill, low-technology tras’. Technological Forecasting and Social Change, 69, 885-895.
(30) Rodriguez, G. & Bibriesca, G. (2019). Modelo de Transformación Digital en las empresas. XXXII Congreso Nacional y XVIII Congreso Internacional de Informática y Computación de la ANIEI, Puebla, México.
(31) Varian, H. (2013). Big Data: New Tricks for Econometrics. The Journal of Economic Perspectives, 28, 3–27.
(32) Waller, M., & Fawcett, S. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Empirical Supply Topic, 34, 77–84.
(33) Wilkin, C., Ferreira, A., Rotaru, K., & Gaerlan, L.R. (2020). Big data prioritization in SCM decision-making: Its role and performance implications. International Journal of Accounting Information System, 38, pp 100470.
(34) Wu, P., Lu, Z., Zhou, Q., Lei, Z., Li, X., Qiu, M., & Hung, P. (2019). Bigdata logs analysis based on seq2seq networks for cognitive Internet of Things. Future Generation Computer Systems, 90, 477-488.
(35) Zhang, G., & Berardi, V. (2001). Time series forecasting with neural network ensembles: An application for exchange rate prediction. Journal of the Operational Society, 52, 652-664, DOI: 10.1057/palgrave.jors.2601133
(36) Zhong, R., Newman, S., Huang, G., & Lan, S. (2016). Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Computers and Industrial Engineering, 101, 572 – 591.
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
Esta revista está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional License. Los artículos se pueden copiar, distribuir, adaptar y comunicar públicamente, siempre y cuando se reconozcan los créditos de la obra y se cite la respectiva fuente. Esta obra no puede ser utilizada con fines comerciales.
Para aumentar su visibilidad, los documentos se envían a bases de datos y sistemas de indización.
El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución.