A endogenização como mecanismo evolutivo para a Transformação digital das pmes de turismo da natureza
DOI:
https://doi.org/10.22267/rtend.222301.185Palavras-chave:
Big Data; cadeia turística; modelos econométricos; PME de turismo da natureza; transformação digitalResumo
O objetivo deste artigo é endogenizar a transformação digital em PMEs de turismo de natureza no departamento de Magdalena-Colombia, doravante designada por região, neste sentido, o conceito de endogenização como mecanismo evolutivo refere-se à aplicação do modelo discreto a matemática de escolha como motor de análise das variáveis, que serão estudadas dentro do modelo. O tipo de estudo foi quantitativo, nível correlacional, a amostra foi composta por 386 agentes da rede turística; Para a coleta de dados, foi utilizado um instrumento do tipo survey com cinco fatores, a escala utilizada tipo licker, para a extração dos fatores foi utilizada a análise fatorial confirmatória, utilizando equações estruturais, em seguida foi executado um modelo de escolha discreta e posteriormente a análise Dos resultados, entre os principais achados estão que PMEs da cadeia do turismo que tentaram incorporar atividades de Big Data nos processos de tomada de decisão têm maiores chances de sucesso na transformação digital, além disso, foram encontradas evidências estatísticas que sustentam que A formação de o pessoal em Data Science contribui significativamente para os processos de marketing e comercialização dentro do SME nesta região.
Downloads
Referências
(1) Addo, R. & Helo, P. (2016). Big data applications in operations/supply-chain management: A literature review. Computers and Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023
(2) Alfall, L., Marín J., García, C y Medina L., (2014). An analysis of the direct and mediated effects of employee commitment and supply chain integration on organizational performance. Revista Internacional de Economía de la Producción, 162, 242 – 257.
(3) Ahiaga, A. (2014). Dealing with construction cost overruns using data mining. Construction Management and Economics, 32, 682-694. https://doi.org/10.1080/01446193.2014.933854
(4) Anguiano, A. y Pancorbo, S. (2008). El marketing urbano como herramienta de apoyo a la gestión del turismo urbano de ciudad: estudio de un caso, el patrimonio industrial. Revista ACE, (9), pp. 739-748.
(5) Angus, D. & Rintel, J. (2013). Making sense of big text: a visual-first approach for analysing text data using Leximancer and Discursis International. Journal of Social Research Methodology, 16, 261 -267.
(6) Artigues, A., Cucchietti, F., Tripiana Montes, C., Vicente, D., Calmet, H., Marin, G., Houzeaux, G., & Vazquez, M. (2015). Scientific Big Data Visualization: a coupled tools approach. Supercomputing Frontiers and Innovations, 3, 4-18. doi: http://dx.doi.org/10.14529/jsfi140301
(7) Arunachalam, D., Kumar, N. & Kawalek, J. (2018). Understanding big data analytics capabilities in supply chainmanagement: unravelling the issues, challenges and implicationsfor practice. Transportation Research Part E: Logistics and Transportation Review, 114, 416–436.
(8) Bhimani, A. & Willcocks, L. (2014). Digitization, ‘Big Data’ and the transformation of accounting information. Accounting and Business Research, 44, 469-490, https://doi.org/10.1080/00014788.2014.910051
(9) Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes. International Journal of Operations & Production Management, 38(7), 1589–161.
(10) Chen, H., Chiang, R., & Storey, V. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36 (4), 1165-1188. doi:10.2307/41703503
(11) Chen, C., & Zhang, C. (2014). Data-intensive applications, challenges, techniques, and technologies: A survey on Big Data. Information Sciences, 275, 314–347. doi: 10.1016/j.ins.2014.01.015
(12) Chiang, D., Lin, C., & Chen, M. (2011). The adaptive approach for storage assignment by mining data of warehouse management system for distribution centers. Enterprise Information Systems, 5, 219-234.
(13) Desjardins, J. (2019). How much data is generated each day? News. https://enewswithoutborders.com/2019/04/23/how-much-data-is-generated-each-day/
(14) Dobre, C., & Xhafa, F. (2014). Intelligent services for Big Data science. Future Gener. Comput. Syst, 37, 267-281.
(15) Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
(16) Grover, V., Chiang, R. H., Liang, T., & Zhang, D. (2018). Creating strategic business value from big data analytics: a research framework. Journal of Management Information Systems, 35 (2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
(17) Hann, T. H., & Steurer, E. (1996). Much ado about nothing? Exchange rate forecasting: Neural networks vs. linear models using monthly and weekly data. Neurocomputing, 10, 323–339. https://doi.org/10.1016/0925-2312(95)00137-9
(18) Hazen, L. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. lnternational Journal of Production Economics, 154, 72-80.
(19) Hofmnn, E. (2017). Big data and supply chain decisions: the impact of volume, variety, and velocity properties on the bullwhip effect. Intenational Journal of Production Research, 55 (17), 5108–5126.
(20) Jagielska, I., & Jaworski, J. (1996). Neural network for predicting the performance of credit card accounts. Comput Econ, 9, 77–82. https://doi.org/10.1007/BF00115693
(21) Kubina, M., Varmus, M., & Kubinova, I. (2015). Use of big data for competitive advantage of company. Procedia Economics and Finance, 26, 561–565.
(22) Landon, M., & Michael A. (2016). Big Data and Intelligence: Applications, Human Capital, and Education. Journal of Strategic Security, (9), 92–121.
(23) Matt, C., Hess, T. & Benlian. A. (2015). Digital Transformation Strategies. Business Information Systems Engineering, 57(5), 339–343. DOI 10.1007/s12599-015-0401-5
(24) McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, 90, 60–128.
(25) Morakanyane, R., Grace, A., & O'Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives. Bled, Slovenia DOI:10.18690/978-961-286-043-1.30
(26) Müller, O., Fay, M. & Brocke, J., (2018). The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics. Journal of Management Information Systems, 35, 488-509. https://doi.org/10.1080/07421222.2018.1451955
(27) Nitzl, C., Roldán, J., & Cepeda, G. (2016). Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models. Econometrics, 116, 1849–1864.
(28) Ortiz, F., Cabrera, A., & López, F. (2013). Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales. Contaduría y Administración, 58, 203-225.
(29) Pietro, G. (2002). Technological change, labor markets, and ‘low-skill, low-technology tras’. Technological Forecasting and Social Change, 69, 885-895.
(30) Rodriguez, G. & Bibriesca, G. (2019). Modelo de Transformación Digital en las empresas. XXXII Congreso Nacional y XVIII Congreso Internacional de Informática y Computación de la ANIEI, Puebla, México.
(31) Varian, H. (2013). Big Data: New Tricks for Econometrics. The Journal of Economic Perspectives, 28, 3–27.
(32) Waller, M., & Fawcett, S. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Empirical Supply Topic, 34, 77–84.
(33) Wilkin, C., Ferreira, A., Rotaru, K., & Gaerlan, L.R. (2020). Big data prioritization in SCM decision-making: Its role and performance implications. International Journal of Accounting Information System, 38, pp 100470.
(34) Wu, P., Lu, Z., Zhou, Q., Lei, Z., Li, X., Qiu, M., & Hung, P. (2019). Bigdata logs analysis based on seq2seq networks for cognitive Internet of Things. Future Generation Computer Systems, 90, 477-488.
(35) Zhang, G., & Berardi, V. (2001). Time series forecasting with neural network ensembles: An application for exchange rate prediction. Journal of the Operational Society, 52, 652-664, DOI: 10.1057/palgrave.jors.2601133
(36) Zhong, R., Newman, S., Huang, G., & Lan, S. (2016). Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Computers and Industrial Engineering, 101, 572 – 591.
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
Esta revista está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional License. Los artículos se pueden copiar, distribuir, adaptar y comunicar públicamente, siempre y cuando se reconozcan los créditos de la obra y se cite la respectiva fuente. Esta obra no puede ser utilizada con fines comerciales.
Para aumentar su visibilidad, los documentos se envían a bases de datos y sistemas de indización.
El contenido de los artículos es responsabilidad de cada autor y no compromete, de ninguna manera, a la revista o a la institución.