Endogenization as an evolutionary mechanism for the digital Transformation of nature tourism smes

Authors

DOI:

https://doi.org/10.22267/rtend.222301.185

Keywords:

Big Data; tourism chain; econometric models; nature tourism SMEs; digital transformation

Abstract

The purpose of this article is to endogenize the digital transformation in nature tourism SMEs in the department of Magdalena -Colombia, hereinafter referred to as a region, in this sense, the concept of endogenization as an evolutionary mechanism refers to the application of the model discrete choice mathematics as an analysis engine for the variables, which will be studied within the model. The type of study was quantitative, correlational level, the sample consisted of 386 agents of the tourist chain; For data collection, a survey-type instrument with five factors was used, the scale used licker type, for the extraction of the factors, the confirmatory factor analysis was used, using structural equations, then a discrete choice model was run and later the analysis Of the results, among the main findings are that SMEs in the tourism chain that tried to incorporate Big Data activities in decision-making processes have greater chances of success in the digital transformation, in addition, statistical evidence was found that sustains that The training of personnel in Data Science contributes significantly to the Marketing and commercialization processes within the SME in this region.

Downloads

Download data is not yet available.

Author Biographies

Raúl Enrique Rodriguez Luna, Universidad Cooperativa de Colombia

Doctor (C) en Economía, Universidad de Zulia, Venezuela. Profesor Investigador, Universidad Cooperativa de Colombia, Santa Marta. ORCiD: 0000-0002-8718-2681. E-mail: raul.rodriguez@campusucc.edu.co, Colombia.

José Luis Rosenstiehl Martinez, Universidad Cooperativa de Colombia

Doctor en Ciencias Gerenciales, Universidad Rafael Belloso Chacín, Venezuela. Profesor Investigador, Universidad Cooperativa de Colombia, Santa Marta. ORCiD: 0000-0002-7515-8289. E-mail: jose.rosenstiehl@campusucc.edu.co, Colombia.

References

(1) Addo, R. & Helo, P. (2016). Big data applications in operations/supply-chain management: A literature review. Computers and Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023

(2) Alfall, L., Marín J., García, C y Medina L., (2014). An analysis of the direct and mediated effects of employee commitment and supply chain integration on organizational performance. Revista Internacional de Economía de la Producción, 162, 242 – 257.

(3) Ahiaga, A. (2014). Dealing with construction cost overruns using data mining. Construction Management and Economics, 32, 682-694. https://doi.org/10.1080/01446193.2014.933854

(4) Anguiano, A. y Pancorbo, S. (2008). El marketing urbano como herramienta de apoyo a la gestión del turismo urbano de ciudad: estudio de un caso, el patrimonio industrial. Revista ACE, (9), pp. 739-748.

(5) Angus, D. & Rintel, J. (2013). Making sense of big text: a visual-first approach for analysing text data using Leximancer and Discursis International. Journal of Social Research Methodology, 16, 261 -267.

(6) Artigues, A., Cucchietti, F., Tripiana Montes, C., Vicente, D., Calmet, H., Marin, G., Houzeaux, G., & Vazquez, M. (2015). Scientific Big Data Visualization: a coupled tools approach. Supercomputing Frontiers and Innovations, 3, 4-18. doi: http://dx.doi.org/10.14529/jsfi140301

(7) Arunachalam, D., Kumar, N. & Kawalek, J. (2018). Understanding big data analytics capabilities in supply chainmanagement: unravelling the issues, challenges and implicationsfor practice. Transportation Research Part E: Logistics and Transportation Review, 114, 416–436.

(8) Bhimani, A. & Willcocks, L. (2014). Digitization, ‘Big Data’ and the transformation of accounting information. Accounting and Business Research, 44, 469-490, https://doi.org/10.1080/00014788.2014.910051

(9) Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes. International Journal of Operations & Production Management, 38(7), 1589–161.

(10) Chen, H., Chiang, R., & Storey, V. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36 (4), 1165-1188. doi:10.2307/41703503

(11) Chen, C., & Zhang, C. (2014). Data-intensive applications, challenges, techniques, and technologies: A survey on Big Data. Information Sciences, 275, 314–347. doi: 10.1016/j.ins.2014.01.015

(12) Chiang, D., Lin, C., & Chen, M. (2011). The adaptive approach for storage assignment by mining data of warehouse management system for distribution centers. Enterprise Information Systems, 5, 219-234.

(13) Desjardins, J. (2019). How much data is generated each day? News. https://enewswithoutborders.com/2019/04/23/how-much-data-is-generated-each-day/

(14) Dobre, C., & Xhafa, F. (2014). Intelligent services for Big Data science. Future Gener. Comput. Syst, 37, 267-281.

(15) Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004

(16) Grover, V., Chiang, R. H., Liang, T., & Zhang, D. (2018). Creating strategic business value from big data analytics: a research framework. Journal of Management Information Systems, 35 (2), 388–423. https://doi.org/10.1080/07421222.2018.1451951

(17) Hann, T. H., & Steurer, E. (1996). Much ado about nothing? Exchange rate forecasting: Neural networks vs. linear models using monthly and weekly data. Neurocomputing, 10, 323–339. https://doi.org/10.1016/0925-2312(95)00137-9

(18) Hazen, L. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. lnternational Journal of Production Economics, 154, 72-80.

(19) Hofmnn, E. (2017). Big data and supply chain decisions: the impact of volume, variety, and velocity properties on the bullwhip effect. Intenational Journal of Production Research, 55 (17), 5108–5126.

(20) Jagielska, I., & Jaworski, J. (1996). Neural network for predicting the performance of credit card accounts. Comput Econ, 9, 77–82. https://doi.org/10.1007/BF00115693

(21) Kubina, M., Varmus, M., & Kubinova, I. (2015). Use of big data for competitive advantage of company. Procedia Economics and Finance, 26, 561–565.

(22) Landon, M., & Michael A. (2016). Big Data and Intelligence: Applications, Human Capital, and Education. Journal of Strategic Security, (9), 92–121.

(23) Matt, C., Hess, T. & Benlian. A. (2015). Digital Transformation Strategies. Business Information Systems Engineering, 57(5), 339–343. DOI 10.1007/s12599-015-0401-5

(24) McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, 90, 60–128.

(25) Morakanyane, R., Grace, A., & O'Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives. Bled, Slovenia DOI:10.18690/978-961-286-043-1.30

(26) Müller, O., Fay, M. & Brocke, J., (2018). The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics. Journal of Management Information Systems, 35, 488-509. https://doi.org/10.1080/07421222.2018.1451955

(27) Nitzl, C., Roldán, J., & Cepeda, G. (2016). Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models. Econometrics, 116, 1849–1864.

(28) Ortiz, F., Cabrera, A., & López, F. (2013). Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales. Contaduría y Administración, 58, 203-225.

(29) Pietro, G. (2002). Technological change, labor markets, and ‘low-skill, low-technology tras’. Technological Forecasting and Social Change, 69, 885-895.

(30) Rodriguez, G. & Bibriesca, G. (2019). Modelo de Transformación Digital en las empresas. XXXII Congreso Nacional y XVIII Congreso Internacional de Informática y Computación de la ANIEI, Puebla, México.

(31) Varian, H. (2013). Big Data: New Tricks for Econometrics. The Journal of Economic Perspectives, 28, 3–27.

(32) Waller, M., & Fawcett, S. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Empirical Supply Topic, 34, 77–84.

(33) Wilkin, C., Ferreira, A., Rotaru, K., & Gaerlan, L.R. (2020). Big data prioritization in SCM decision-making: Its role and performance implications. International Journal of Accounting Information System, 38, pp 100470.

(34) Wu, P., Lu, Z., Zhou, Q., Lei, Z., Li, X., Qiu, M., & Hung, P. (2019). Bigdata logs analysis based on seq2seq networks for cognitive Internet of Things. Future Generation Computer Systems, 90, 477-488.

(35) Zhang, G., & Berardi, V. (2001). Time series forecasting with neural network ensembles: An application for exchange rate prediction. Journal of the Operational Society, 52, 652-664, DOI: 10.1057/palgrave.jors.2601133

(36) Zhong, R., Newman, S., Huang, G., & Lan, S. (2016). Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Computers and Industrial Engineering, 101, 572 – 591.

Published

2022-01-01

How to Cite

Rodriguez Luna, R. E., & Rosenstiehl Martinez, J. L. (2022). Endogenization as an evolutionary mechanism for the digital Transformation of nature tourism smes. Tendencias, 23(1), 117–138. https://doi.org/10.22267/rtend.222301.185