MicroRNAs asociados al Cáncer de Cuello Uterino

Autores/as

  • Milena Guerrero Florez Grupo de Investigación en Salud Pública Centro de Estudios en Salud Universidad de Nariño
  • Olivia Alexandra Guerrero Gómez Departamento de Biología Universidad de Nariño

DOI:

https://doi.org/10.22267/rus.161802.44

Palabras clave:

Cáncer de cuello uterino, MicroRNAs, Biomarcadores, Diagnóstico, Biología molecular

Resumen

Los microRNAs (miRNAs) tienen especial interés en oncología, se ha demostrado el papel de miRNAs en el control de la expresión de genes reguladores del ciclo celular, alteración génica y su implicación en diferentes tipos de cáncer. En este estudio, se realizó una búsqueda sistemática de literatura científica en bases de datos, que establecieran asociación de miRNAs con Cáncer de Cuello Uterino-CCU. Se analizó la localización genómica y cromosómica de miRNAs, la clasificación funcional, grupos de miRNAs al que pertenecen y su implicación en la progresión del CCU. Como resultado, se incluyeron 139 artículos científicos sobre miRNAs en CCU. Se identificaron 272 miRNAs en total y de ellos 252 miRNAs con expresión diferencial en tejidos cancerosos de cuello uterino; de estos, 97 miRNAs están sobre-expresados y 88 miRNAs infra-expresados. 67 miRNAs tuvieron perfiles de expresión variables. La mayoría de miRNAs asociados al CCU se encontraron en los cromosomas 1, 14, 19 y X, así como en regiones intrónicas e intergénicas. El cromosoma 18 humano contiene el menor número de miRNAs. Se identificaron miRNAs en procesos asociados al control del ciclo celular y respuesta inflamatoria. No obstante, se requieren más estudios para esclarecer los mecanismos de los miRNAs en desarrollo del CCU. Con esta revisión se destaca la importancia de miRNAs como biomarcadores pronóstico y diagnóstico, se brinda una actualización sobre miRNAs asociados al CCU y sus lesiones precursoras y se genera un recurso de recopilación y consulta valioso para orientar investigaciones de medicina molecular en este campo.  

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. 2015; 386.

Torre L, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer Statistics, 2012. 2015; 00(00): 1-22.

Sankaranarayanan R, Thara S, Esmy PO, Basu P. Cervical Cancer: Screening and therapeutic perspectives. Medical Principles and Practice. 2008; 17(5): 351-64.

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. 2010; 127(12): 2893-917.

Bosch FX, Lorincz A, Muñoz N, Meijer C, Shah KV. The causal relation between human papillomavirus and cervical cancer. Journal of clinical pathology. 2002; 55(4): 244-65.

Bosch FX, Qiao Y-L, Castellsagué X. CHAPTER 2. The epidemiology of human papillomavirus infection and its association with cervical cancer. International Journal of Gynecology & Obstetrics. 2006; 94: S8-

Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV., et al. Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. New England Journal of Medicine. 2003; 348(6): 518-27.

Muñoz N, Bosch FX, de Sanjosé S, Tafur L, Izarzugaza I, Gili M., et al. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. International journal of cancer. 1992; 52(5): 743-9.

Franco EL, Duarte-Franco E, Ferenczy A. Cervical Cancer: epidemiology, prevention and the role of Human Papillomavirus infection. CMAJ : Canadian Medical Association journal. 2001; 164(7): 1017-25.

Cañadas M, Darwich L, Sirera G, Cirigliano V, Bofill M, Clotet B, et al. New molecular method for the detection of human papillomavirus type 16 integration. Clinical Microbiology and Infection. 2010; 16(7): 836-42.

de Villiers E. Cross-roads in the classification of papillomaviruses. Virology. 2013; 445(1-2): 2-10.

Joura E, Giuliano AR, Iversen O-E, Bouchard C, Mao C, Mehlsen J., et al. A 9-Valent HPV Vaccine against Infection and Intraepithelial Neoplasia in Women. New England Journal of Medicine [Internet]. 2015; 372(8): 711-23. Recuperado a partir de: http://dx.doi.org/10.1056/NEJMoa1405044

Nanda K, Mccrory DC, Myers ER, Bastian L a, Hasselblad V, Hickey JD., et al. Accuracy of the Papanicolaou Test in Screening for and Follow-up of Cervical Cytologic Abnormalities: A Systematic Review. Annals of Internal Medicine [Internet]. 2000; 132(10): 810-9. Recuperado a partir de: http://www.annals.org/content/132/10/810.short

Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5-29.

Phuah NH, In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH. Alterations of MicroRNA Expression Patterns in Human Cervical Carcinoma Cells (Ca Ski) toward 1’S-1'-Acetoxychavicol Acetate and Cisplatin. Reproductive Sciences. 2012; 20(5): 567-78.

Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004; 116(2): 281-97.

Bartel DP. MicroRNA Target Recognition and Regulatory Functions. Cell. 2009; 136(2): 215-33.

Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A., et al. Original article miRBase Tracker : keeping track of microRNA annotation changes. 2014; 1-8.

Kozomara A, Griffiths-Jones S. MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research. 2014; 42(D1): 68-73.

Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X., et al. A uniform system for microRNA annotation. RNA (New York, NY). 2003; 9(3): 277-9.

Calin G, Croce C. MicroRNA signatures in human cancers. Nature reviews Cancer. 2006; 6(11): 857-66.

Montufar M. Analisis de MiRNAs y sus genes blanco en lineas celulares del cancer de cervix. Universidad Autonoma de Nuevo Leon; 2013.

Sharma G, Dua P, Agarwal SM. A Comprehensive Review of Dysregulated miRNAs Involved in Cervical Cancer. Current genomics [Internet]. 2014; 15(4): 310-23. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/25132800

Yin Y, Song M, Gu B, Qi X, Hu Y, Feng Y., et al. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene [Internet]. Elsevier B.V.; 2015; 145. Recuperado a partir de:http://linkinghub.elsevier.com/retrieve/pii/S0378111915014869

Cai L, Cai X. Up-regulation of miR-9 expression predicate advanced clinicopathological features and poor prognosis in patients with hepatocellular carcinoma. Diagnostic pathology [Internet]. 2014; 9(1): 1000. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/25552204

Durso M, Gaglione M, Piras L, Mercurio ME, Terreri S, Olivieri M., et al. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. European Journal of Medicinal Chemistry [Internet]. Elsevier Ltd; 2016; 111: 15-25. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0223523416300472

Van Giau V, An SSA. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. Journal of the Neurological Sciences [Internet]. Elsevier B.V.; 2016; 360: 141-52. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0022510X15300708

Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J., et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism and Related Disorders. 2016;22:68-73.

Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Research. 2004; 14(10 A): 1902-10.

Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S., et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(9): 2999-3004.

Reshmi G, Chandra SSV, Babu VJM, Babu PSS, Santhi WS, Ramachandran S., et al. Identification and analysis of novel microRNAs from fragile sites of human cervical cancer: Computational and experimental approach. Genomics [Internet]. Elsevier Inc.; 2011; 97(6): 333-40. Recuperado a partir de: http://dx.doi.org/10.1016/j.ygeno.2011.02.010

Rao PH, Arias-Pulido H, Lu X-Y, Harris CP, Vargas H, Zhang FF., et al. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma. BMC cancer [Internet]. 2004; 4(1): 5. Recuperado a partir de: http://www.biomedcentral.com/1471-2407/4/5

Wilting SM, Snijders PJF, Verlaat W, Jaspers A, van de Wiel M a, van Wieringen WN., et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene. 2013; 32: 106-16.

Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T, Fujimura L., et al. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. International Journal of Oncology. 2013; 43(6): 1855-63.

Ribeiro J, Marinho-Dias J, Monteiro P, Loureiro J, Baldaque I, Medeiros R., et al. miR-34a and miR-125b Expression in HPV Infection and Cervical Cancer Development. BioMed Research International [Internet]. 2015; 2015: 1-6. Recuperado a partir de: http://www.hindawi.com/journals/bmri/2015/304584/

Ribeiro J, Sousa H. MicroRNAs as biomarkers of cervical cancer development: A literature review on miR-125b and miR-34a. Molecular Biology Reports. 2014; 41(3): 1525-31.

Kozomara a., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research [Internet]. 2011; 39(Database): D152-7. Recuperado a partir de: http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkq1027

Cioffi M, Trabulo SM, Sanchez-Ripoll Y, Miranda-Lorenzo I, Lonardo E, Dorado J., et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015; gutjnl - 2014-308470.

Concepcion C, Bonetti C, Ventura A. The miR-17-92 family of microRNA clusters in development and disease. Cancer journal. 2012; 18(3): 262-7.

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S., et al. A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research. 2005; 65(21): 9628-32.

Li Y, Vecchiarelli-Federico LM, Li YJ, Egan SE, Spaner D, Hough MR., et al. The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood. 2012; 119(19): 4486-98.

Lu Y, Thomson JM, Wong HYF, Hammond SM, Hogan BLM. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology. 2007; 310(2): 442-53.

Mestdagh P, Bostr??m AK, Impens F, Fredlund E, Van Peer G, De Antonellis P., et al. The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-?? Pathway in Neuroblastoma. Molecular Cell. 2010; 40(5): 762-73.

Van Haaften G, Agami R. Tumorigenicity of the miR-17-92 cluster distilled. Genes and Development. 2010; 24(1): 1-4.

Wu T, Wieland A, Araki K, Davis CW, Ye L, Hale JS., et al. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2012; 109(25): 9965-70. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3382487&tool=pmcentrez&rendertype=abstract

Wei Q, Li Y-X, Liu M, Li X, Tang H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB life [Internet]. 2012; 64(8): 697-704. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22730212

Yu Y, Zhang Y, Zhang S. MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells. Oncology Letters. 2013; 6(2): 468-74.

Kang HW, Wang F, Wei Q, Zhao YF, Liu M, Li X., et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Letters [Internet]. Federation of European Biochemical Societies; 2012; 586(6): 897-904. Recuperado a partir de: http://dx.doi.org/10.1016/j.febslet.2012.02.020

Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH., et al. MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Letters [Internet]. Elsevier Ireland Ltd; 2012; 322(2): 148-58. Recuperado a partir de: http://dx.doi.org/10.1016/j.canlet.2012.02.038

Cai N, Wang Y-D, Zheng P-S. The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA (New York, NY) [Internet]. 2013; 19(1): 85-95. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3527729&tool=pmcentrez&rendertype=abstract

Servín-González L, Granados-López A, López J. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer. International Journal of Molecular Sciences [Internet]. 2015; 16(6): 12773-90. Recuperado a partir de: http://www.mdpi.com/1422-0067/16/6/12773/

Qiang R, Wang F, Shi LY, Liu M, Chen S, Wan HY., et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. International Journal of Biochemistry and Cell Biology [Internet]. Elsevier Ltd; 2011; 43(4): 632-41. Recuperado a partir de: http://dx.doi.org/10.1016/j.biocel.2011.01.002

Lui W-O, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer research. 2007; 67(13): 6031-43.

Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY., et al. Altered MicroRNA expression in cervical carcinomas. Clinical Cancer Research. 2008;14(9):2535-42.

Martinez I, Gardiner S, Board KF, Monzon F, Edwards RP, Khan S. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene. 2008; 27(18): 2575-82.

Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C., et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE. 2008; 3(7): e2557.

Li JH, Xiao X, Zhang YN, Wang YM, Feng LM, Wu YM, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecologic Oncology [Internet]. Elsevier Inc.; 2011; 120(1): 145-51. Recuperado a partir de: http://dx.doi.org/10.1016/j.ygyno.2010.09.009

Wang L, Wang Q, Li HL, Han LY. Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma-relationship with prognosis. Asian Pacific Journal of Cancer Prevention. 2013; 14(3): 2113-8.

Ye C, Sun N-X, Ma Y, Zhao Q, Zhang Q, Xu C., et al. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS letters [Internet]. Federation of European Biochemical Societies; 2015; 1-8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/25666710

Chen Y, Ma C, Zhang W, Chen Z, Ma L. Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer. Diagnostic Pathology [Internet]. 2014; 9(1):

Recuperado a partir de: http://www.diagnosticpathology.org/content/9/1/88

Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO., et al. A microRNA expression signature for cervical cancer prognosis. Cancer Research. 2010; 70(4): 1441-8.

Lajer CB, Garnæs E, Friis-Hansen L, Norrild B, Therkildsen MH, Glud M., et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. British journal of cancer [Internet]. 2012; 106(9): 1526-34. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3341860&tool=pmcentrez&rendertype=abstract

Rao Q, Zhou H, Peng Y, Li J, Lin Z. Aberrant microRNA expression in human cervical carcinomas. Medical Oncology. 2012; 29(2): 1242-8.

Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H. MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Letters [Internet]. Federation of European Biochemical Societies; 2013; 587(14): 2247-53. Recuperado a partir de: http://dx.doi.org/10.1016/j.febslet.2013.05.054

Hao Z, Yang J, Wang C, Li Y, Zhang Y, Dong X., et al. MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. Int J Clin Exp Med. 2015; 8(1): 480-7.

Cheung TH, Man KN, Yu MY, Yim SF, Siu NS, Lo KW., et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle. 2012; 11(15): 2876-84.

Liu W, Gao G, Hu X, Wang Y, Schwarz JK. Activation of miR-9 by human papillomavirus in cervical cancer. OncoTarget. 2014; 5(22).

Pereira PM, Marques JP, Soares AR, Carreto L, Santos M. Microrna expression variability in human cervical tissues. PLoS ONE. 2010; 5(7): e11780.

Long M-J, Wu F-X, Li P, Liu M, Li X, Tang H. MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Letters. 2012; 324(2): 186-96.

Park H, Lee M, Jeong J, Choi MC, Jung SG, Joo WD., et al.

Dysregulated microRNA expression in adenocarcinoma of the uterine cervix: Clinical impact of miR-363-3p. Gynecologic Oncology [Internet]. Elsevier Inc.; 2014; 135(3): 565-72. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0090825814013134

Gardiner A, McBee W, Edwards R, Lesnock J, Bhargava R. MicroRNA Analysis in Human Papillomavirus (HPV)-Associated Cervical Neoplasia and Cancer. Journal of Carcinogenesis & Mutagenesis [Internet]. 2011; 2(1): 1-9. Recuperado a partir de: http://www.omicsonline.org/2157-2518/2157-2518-2-114.digital/2157-2518-2-114.html

Wang X, Wang H-K, Li Y, Hafner M, Banerjee NS, Tang S, et al. MicroRNAs are biomarkers of oncogenic human papillomavirus infections. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2014; 111(11): 4262-7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24591631

Villegas V, Juárez S, Pérez O a., Arreola H, Paniagua L, Parra-Melquiadez M., et al. Heterogeneity of microRNAs expression in cervical cancer cells: Over-expression of miR-196a. International Journal of Clinical and Experimental Pathology. 2014; 7(4): 1389-401.

Zhao S, Yao DS, Chen JY, Ding N. Aberrant Expression of miR-20a and miR-203 in Cervical Cancer. Asian Pacific Journal of Cancer Prevention. 2013; 14(4): 2289-93.

Zhao S, Yao D, Chen J, Ding N, Ren F. MiR-20a Promotes Cervical Cancer Proliferation and Metastasis In Vitro and In Vivo. Plos One [Internet]. 2015; 10(3): e0120905. Recuperado a partir de: http://dx.plos.org/10.1371/journal.pone.0120905

Lui W-O, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer research. 2007; 67(13): 6031-43.

Deftereos G, Corrie SR, Feng Q, Morihara J, Stern J, Hawes SE., et al. Expression of MIR-21 and Mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer. PLoS ONE. 2011; 6(12).

Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochimica et Biophysica Acta - Molecular Basis of Disease [Internet]. Elsevier B.V.; 2012; 1822(2): 248-60. Recuperado a partir de: http://dx.doi.org/10.1016/j.bbadis.2011.09.018

Liu J, Sun H, Wang X, Yu Q, Li S, Yu X., et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. International Journal of Molecular Sciences. 2014; 15(1): 758-73.

Bumrungthai S, Ekalaksananan T, Evans MF, Chopjitt P, Tangsiriwatthana T, Patarapadungkit N., et al. Up-Regulation of miR-21 Is Associated with Cervicitis and Human Papillomavirus Infection in Cervical Tissues. Plos One [Internet]. 2015; 10(5): e0127109. Recuperado a partir de: http://dx.plos.org/10.1371/journal.pone.0127109

Shishodia G, Shukla S, Srivastava Y, Masaldan S, Mehta S, Bhambhani S., et al. Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Molecular Cancer [Internet]; 2015; 14(1): 116. Recuperado a partir de: http://www.molecular-cancer.com/content/14/1/116

Jia W, Wu Y, Zhang Q, Gao G, Zhang C, Xiang Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Molecular and Clinical Oncology [Internet]. 2015; 851-8. Recuperado a partir de: http://www.spandidos-publications.com/10.3892/mco.2015.560

Luo M, Shen D, Wang W, Xian J. Aberrant expression of microRNA-26b and its prognostic potential in human cervical cancer. Int J Clin Exp Pathol. 2015; 8(5): 5542-8.

Gocze K, Gombos K, Juhasz K, Kovacs K, Kajtar B, Benczik M., et al. Unique microRNA expression profiles in Cervical Cancer. Anticancer Research. 2013; 33(6): 2561-8.

Xiong X, Luo X, Liu X, Li E, Zeng L. A genetic variant in pre-miR-27a is associated with a reduced cervical cancer risk in southern Chinese women. Gynecologic Oncology [Internet]. Elsevier Inc.; 2014; 529(132): 450-4. Recuperado a partir de: http://dx.doi.org/10.1016/j.ygyno.2013.12.030

Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J., et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. Journal of Pathology. 2011; 224(4): 484-95.

He L, Wang H-Y, Zhang L, Huang L, Li J-D, Xiong Y., et al. Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer. Cell death & disease [Internet]. 2014; 5: e1205. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24787017

Zeng K, Zheng W, Mo X, Liu F, Li M, Liu Z., et al. Dysregulated microRNAs involved in the progression of cervical neoplasm. Archives of Gynecology and Obstetrics [Internet]. 2015. Recuperado a partir de: http://link.springer.com/10.1007/s00404-015-3702-5

Zheng W, Liu Z, Zhang W, Hu X. miR-31 functions as an oncogene in cervical cancer. Archives of Gynecology and Obstetrics [Internet]. Springer Berlin Heidelberg; 2015. Recuperado a partir de: http://link.springer.com/10.1007/s00404-015-3713-2

Wang X, Wang H-K, McCoy JP, Banerjee NS, Rader JS, Broker TR., et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA (New York, NY). 2009; 15(4): 637-47.

Tian Q, Li Y, Wang F, Li Y, Xu J, Shen Y., et al. MicroRNA Detection in Cervical Exfoliated Cells as a Triage for Human Papillomavirus-Positive Women. JNCI Journal of the National Cancer Institute [Internet]. 2014; 106(9): dju241-dju241. Recuperado a partir de: http://jnci.oxfordjournals.org/cgi/doi/10.1093/jnci/dju241

Mo W, Tong C, Zhang Y, Lu H. microRNAs’ differential regulations mediate the progress of Human Papillomavirus (HPV)-induced Cervical Intraepithelial Neoplasia (CIN). BMC Systems Biology [Internet]. 2015; 9(4): 1-17. Recuperado a partir de: http://www.biomedcentral.com/1752-0509/9/4

Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochemical and Biophysical Research Communications [Internet]. Elsevier Ltd; 2015; 458(1): 63-9. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0006291X15000960

Wang L, Chang L, Li Z, Gao Q, Cai D, Tian Y., et al. miR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Medical oncology (Northwood, London, England) [Internet]. 2014; 31(5): 934. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24668416

Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG., et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. European Journal of Cancer [Internet]. Elsevier Ltd; 2011; 47(14): 2166-74. Recuperado a partir de: http://dx.doi.org/10.1016/j.ejca.2011.04.037

Wan H-Y, Li Q-Q, Zhang Y, Tian W, Li Y-N, Liu M., et al. MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Letters [Internet]. Elsevier Ireland Ltd; 2014; 355(1): 148-58. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0304383514005047

Dreher A, Rossing M, Kaczkowski B, Andersen DK, Larsen TJ, Christophersen MK., et al. Differential expression of cellular microRNAs in HPV 11, -16, and -45 transfected cells. Biochemical and Biophysical Research Communications [Internet]. Elsevier Inc.; 2011; 412(1): 20-5. Recuperado a partir de: http://dx.doi.org/10.1016/j.bbrc.2011.07.011

Cui F, Li X, Zhu X, Huang L, Huang Y, Mao C., et al. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cellular Physiology and Biochemistry. 2012; 30(5): 1310-8.

Yu Q, Liu SL, Wang H, Shi G, Yang P, Chen XL. miR-126 suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pacific Journal of Cancer Prevention. 2013; 14(11): 6569-72.

Yang Y, Song K, Chang H, Chen L. Decreased expression of miR-126 is associated with poor prognosis in patients with cervical cancer. Int J Clin Exp Pathol [Internet]. 2014; 6(12): 2904-11. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24294377

Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H. NF-kappaB-modulated miR-130a targets TNF-alpha in cervical cancer cells. Journal of translational medicine [Internet]. 2014; 12(1): 155. Recuperado a partir de: http://www.translational-medicine.com/content/12/1/155

Qin W, Dong P, Ma C, Mitchelson K, Deng T, Zhang L., et al. MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways. Oncogene. 2012; 31(36): 4067-75.

Tang T, Wong HK, Gu W, Yu MY, To KF, Wang CC., et al. MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecologic Oncology [Internet]. Elsevier Inc.; 2013; 129(1): 199-208. Recuperado a partir de: http://dx.doi.org/10.1016/j.ygyno.2012.12.043

Liu L, Yu X, Guo X, Tian Z, Su M, Long Y., et al. MiR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Molecular Medicine Reports. 2012; 5(3): 753-60.

Zhang J, Wang L, Li B, Huo M, Mu M, Liu J., et al. miR-145 downregulates the expression of cyclin-dependent kinase 6 in human cervical carcinoma cells. Experimental and Therapeutic Medicine. 2014; 8(2): 591-4.

Wang Q, Qin J, Chen A, Zhou J, Liu J, Cheng J., et al. Downregulation of microRNA-145 is associated with aggressive progression and poor prognosis in human cervical cancer. Tumor Biology [Internet]. 2015. Recuperado a partir de: http://link.springer.com/10.1007/s13277-014-3009-3

Yue C, Wang M, Ding B, Wang W, Fu S, Zhou D., et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecologic Oncology [Internet]. Elsevier B.V.; 2011; 122(1): 33-7. Recuperado a partir de: http://dx.doi.org/10.1016/j.ygyno.2011.03.032

Wang J, Tai L-S, Tzang C-H, Fong WF, Guan X-Y, Yang M. 1p31, 7q21 and 18q21 chromosomal aberrations and candidate genes in acquired vinblastine resistance of human cervical carcinoma KB cells. Oncology reports [Internet]. 2008; 19(5): 1155-64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/18425371

Liang S, Tian T, Liu X, Shi H, Tang C, Yang S., et al. Microarray analysis revealed markedly differential miRNA expressionprofiles in cervical intraepithelial neoplasias and invasive squamous cellcarcinoma. Future Oncology. 2014.

Wilting S, Verlaat W, Jaspers A, Makazaji N, Agami R, Meijer CJ., et al. Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics. 2013; 8(2): 220-8.

Lei C, Wang Y, Huang Y, Yu H, Huang Y, Wu L., et al. Up-regulated miR155 Reverses the Epithelial-mesenchymal Transition Induced by EGF and Increases Chemo-sensitivity to Cisplatin in Human Caski Cervical Cancer Cells. PLoS ONE. 2012; 7(12): 1-9.

Lao G, Liu P, Wu Q, Zhang W, Liu Y, Yang L., et al. Mir-155 promotes cervical cancer cell proliferation through suppression of its target gene LKB1. Tumor Biology [Internet]. 2014; 35(12): 11933-8. Recuperado a partir de: http://link.springer.com/10.1007/s13277-014-2479-7

Ke G, Liang L, Yang JM, Huang X, Han D, Huang S., et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. 2012; (November 2011): 1-9.

Zhou W, Chen J, Jiao T, Hui N, Qi X. MicroRNA-181 targets Yin Yang 1 expression and inhibits cervical cancer progression. Molecular Medicine Reports [Internet]. 2015; 4541-6. Recuperado a partir de: http://www.spandidos-publications.com/10.3892/mmr.2015.3324

Yang L, Wang YL, Liu S, Zhang PP, Chen Z, Liu M., et al. MiR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Letters [Internet]. Federation of European Biochemical Societies; 2014; 588(1): 124-30. Recuperado a partir de: http://dx.doi.org/10.1016/j.febslet.2013.11.019

Sun J, Ji J, Huo G, Song Q, Zhang X. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. 2015; 8(5): 4755-63.

Lee H, Kim KR, Cho NH, Hong SR, Jeong H, Kwon SY., et al. MicroRNA expression profiling and Notch1 and Notch2 expression in minimal deviation adenocarcinoma of uterine cervix. 2014; 1-9.

How C, Hui ABY, Alajez NM, Shi W, Boutros PC, Clarke B., et al. MicroRNA-196b Regulates the Homeobox B7-Vascular Endothelial Growth Factor Axis in Cervical Cancer. PLoS ONE. 2013; 8(7).

Liu C, Lin J, Li L, Zhang Y, Chen W, Cao Z., et al. HPV16 early gene E5 specifically reduces miRNA-196a in cervical cancer cells. Scientific Reports. 2015; 5(7653): 21-5.

Zhang J, Zheng F, Yu G, Yin Y, Lu Q. MiR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochemical and Biophysical Research Communications [Internet]. Elsevier Inc.; 2013; 440(4): 582-8. Recuperado a partir de: http://dx.doi.org/10.1016/j.bbrc.2013.09.142

Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. British journal of cancer [Internet]. 2014; 110(5): 1260-8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24423924

Zhu X, Er K, Mao C, Yan Q, Xu H, Zhang Y., et al. MiR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer. Cellular Physiology and Biochemistry. 2013; 32(1): 64-

Mao L, Zhang Y, Mo W, Yu Y, Lu H. BANF1 Is Downregulated by IRF1-Regulated MicroRNA-203 in Cervical Cancer. Plos One [Internet]. 2015; 10(2): e0117035. Recuperado a partir de: http://dx.plos.org/10.1371/journal.pone.0117035

Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO. miR-205 Expression Promotes Cell Proliferation and Migration of Human Cervical Cancer Cells. PLoS ONE. 2012; 7(10).

Yang Z, Chen S, Luan X, Li Y, Liu M, Li X., et al. MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of hela cells. IUBMB Life. 2009; 61(11): 1075-82.

Peng R-Q, Wan H-Y, Li H-F, Liu M, Li X, Tang H. MicroRNA-214 Suppresses Growth and Invasiveness of Cervical Cancer Cells by Targeting UDP-N-acetyl-D-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase 7. Journal of Biological Chemistry. 2012; 287(17): 14301-9.

Wang F, Liu M, Li X, Tang H. MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Letters [Internet]. 2013; 587(5): 488-95. Recuperado a partir de: http://dx.doi.org/10.1016/j.febslet.2013.01.016

Yamamoto N, Kinoshita T, Nohata N, Itesako T, Yoshino H, Enokida H., et al. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. International Journal of Oncology. 2013; 42(5): 1523-32.

Kogo R, How C, Chaudary N, Bruce J, Shi W, Hill P., et al. The microRNA-218 ~ Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. OncoTarget. 2014; 6(2).

Yuan W, Xiaoyun H, Haifeng Q, Jing L, Weixu H, Ruofan D., et al. MicroRNA-218 Enhances the Radiosensitivity of Human Cervical Cancer via Promoting Radiation Induced Apoptosis. International Journal of Medical Sciences [Internet]. 2014; 11(7): 691-6. Recuperado a partir de: http://www.medsci.org/v11p0691.htm

Tang B, Liu S, Zhan Y, Wei L, Mao X, Wang J., et al. microRNA-218 expression and its association with the clinicopathological characteristics of patients with cervical cancer. Experimental and Therapeutic Medicine [Internet]. 2015; (June 2011): 269-74. Recuperado a partir de: http://www.spandidos-publications.com/10.3892/etm.2015.2455

Shen S, Wang L, Jia Y, Hao Y, Zhang L, Wang H. Upregulation of microRNA-224 is associated with aggressive progression and poor prognosis in human cervical cancer. Diagnostic pathology [Internet]. 2013; 8(1): 69. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3661379&tool=pmcentrez&rendertype=abstract

Li X, Chu H, Lv T, Wang L, Kong S, Dai S. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Letters [Internet]. 2014; 588(17): 3298-307. Recuperado a partir de:

http://linkinghub.elsevier.com/retrieve/pii/S0014579314005699

Wang F, Li Y, Zhou J, Xu J, Peng C, Ye F., et al. MiR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. American Journal of Pathology. 2011; 179(5): 2580-8.

Shen Y, Wang P, Li Y, Ye F, Wang F, Wan X., et al. miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer. British journal of cancer [Internet]. 2013; 109(1): 92-9. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3708577&tool=pmcentrez&rendertype=abstract

Shen Y, Zhou J, Li Y, Ye F, Wan X, Lu W., et al. miR-375 Mediated Acquired Chemo-Resistance in Cervical Cancer by Facilitating EMT. 2014; 9(10).

Xu J, Li Y, Wang F, Wang X, Cheng B, Ye F., et al. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene. 2013; 32: 976-87.

Luo M, Shen D, Zhou X, Chen X, Wang W. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery [Internet]. Mosby, Inc.; 2013; 153(6): 836-47. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23453369

Zhang B, Chen J, Ren Z, Chen Y, Li J, Miao X., et al. A specific miRNA signature promotes radioresistance of human cervical cancer cells. Cancer cell international [Internet]. 2013; 13(1): 118. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24283459

Lin L, Cai Q, Zhang X, Zhang H, Zhong Y, Xu C., et al. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes. Protein & Cell [Internet]. Higher Education Press; 2015; 1: 1-14. Recuperado a partir de: http://link.springer.com/10.1007/s13238-015-0142-8

Chen J, Yao D, Zhao S, He C, Ding N, Li L., et al. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2. Archives of Gynecology and Obstetrics. 2014.

Yang Y, Xie YJ, Xu Q, Chen JX, Shan NC, Zhang Y. Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecologic Oncology [Internet]. 2015. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S0090825815300366

Yao T, Rao Q, Liu L, Zheng C, Xie Q, Liang J., et al. Exploration of tumor suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virology journal. 2013; 2094-105.

Shishodia G, Verma G, Srivastava Y, Mehrotra R, Das BC, Bharti AC. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC cancer,. 2014; 14(1): 1-13.

Huang L, Lin J-X, Yu Y-H, Zhang M-Y, Wang H-Y, Zheng M. Downregulation of Six MicroRNAs Is Associated with Advanced Stage, Lymph Node Metastasis and Poor Prognosis in Small Cell Carcinoma of the Cervix. PLoS ONE. 2012; 7(3): e33762.

Malta M, Ribeiro J, Monteiro P, Loureiro J, Medeiros R, Sousa H. Let-7c is a Candidate Biomarker for Cervical Intraepithelial Lesions: A Pilot Study. Molecular Diagnosis & Therapy [Internet]. Springer International Publishing; 2015; 19(3): 191-6. Recuperado a partir de: http://link.springer.com/10.1007/s40291-015-0145-4

González V, Palma L, Campos A, Lopez E, Peralta O, Vazquez R., et al. MicroRNAs are involved in cervical cancer development, progression, clinical outcome and improvement treatment response (Review). Oncology Reports [Internet]. 2016; (35): 3-12. Recuperado a partir de: http://www.spandidos-publications.com/10.3892/or.2015.4369

He Y, Lin J, Ding Y, Liu G, Luo Y, Huang M., et al. A systematic study on dysregulated microRNAs in cervical cancer development. International journal of cancer. 2015; 1-32.

Ogechukwu OJ. Discordant Reports of miRNA Expression in Cervical Cancer: An Upshot of Overlapping Factors. Research in Cancer and Tumor. 2015; 4(1): 15-23.

Calin G, Croce CM. Chromosomal rearrangements and microRNAs: A new cancer link with clinical implications. Journal of Clinical Investigation. 2007; 117(8): 2059-66.

López C, Marchat L a, Aréchaga E, Azuara E, Pérez C, Fuentes L., et al. Functional Roles of microRNAs in Cancer: microRNomes and oncomiRs Connection. Oncogenomic and Cancer Proteomics - Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer and Cancer Proteomics [Internet]. 2013; 71-90. Recuperado a partir de: http://dx.doi.org/10.5772/53981n1.

Reshmi G, Pillai MR. Beyond HPV: Oncomirs as new players in cervical cancer. FEBS Letters [Internet]. Federation of European Biochemical Societies; 2008; 582(30): 4113-6. Recuperado a partir de: http://dx.doi.org/10.1016/j.febslet.2008.11.011

Banno K, Iida M, Yanokura M, Kisu I, Iwata T, Tominaga E., et al. MicroRNA in Cervical Cancer: OncomiRs and tumor suppressor miRs in diagnosis and treatment. The Scientific World Journal. 2014; 2014: 8.

Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochemical and Biophysical Research Communications [Internet]. Elsevier Inc.; 2009; 388(3): 539-42. Recuperado a partir de: http://dx.doi.org/10.1016/j.bbrc.2009.08.044

Pedroza A, López E, García V, Jacobo N, Herrera L a., Peralta O, et al. MicroRNAs in Cervical Cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules. 2014; 19(5): 6263-81.

Tian RQ, Wang XH, Hou LJ, Jia WH, Yang Q, Li YX., et al. MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin A1 in human cervical cancer, which may contribute to tumorigenesis. Journal of Biological Chemistry. 2011; 286(29): 25556-63.

Cai X, Li G, Laimins L, Cullen BR. Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. Journal of virology. 2006; 80(21): 10890-3.

Wald AI. Role of MicroRNas-363-in HPV associated squamous cell carcinoma of the head and neck. University of Pittsburgh, Pensilvania, Estados Unidos; 2012.

Rothschild SI. microRNA therapies in cancer. Molecular and Cellular Therapies [Internet]. 2014; 2(1): 7. Recuperado a partir de: http://www.molcelltherapies.com/content/2/1/7

Descargas

Publicado

2016-08-31

Cómo citar

1.
Guerrero Florez M, Guerrero Gómez OA. MicroRNAs asociados al Cáncer de Cuello Uterino. Univ. Salud [Internet]. 31 de agosto de 2016 [citado 22 de diciembre de 2024];18(2):345-63. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/2601

Número

Sección

Revisión de Tema